Các phương pháp phân tích hóa học nước biển (Phần 2)

pdf 74 trang ngocly 40
Bạn đang xem 20 trang mẫu của tài liệu "Các phương pháp phân tích hóa học nước biển (Phần 2)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfcac_phuong_phap_phan_tich_hoa_hoc_nuoc_bien_phan_2.pdf

Nội dung text: Các phương pháp phân tích hóa học nước biển (Phần 2)

  1. Chương 3 XÁC ĐỊNH CÁC THÀNH PHẦN CỦA HỆ CÁCBÔNÁT TRONG NƯỚC BIỂN 3.1. XÁC ĐỊNH PH NƯỚC BIỂN BẰNG PHƯƠNG PHÁP SO MÀU 3.1.1. Giới thiệu chung Nước là chất phân ly cực kỳ yếu, sản phẩm phân ly là các ion H+ và OH-: + - H2O ⇔ H + OH Theo định luật tác dụng khối lượng, ở trạng thái cân bằng ta có: + - + - K=[H ].[OH ]/[H2O] hay K[H2O] = [H ].[OH ] Trong đó K là hằng số phân ly (hằng số cân bằng nhiệt động). Vì nồng độ phân tử gam của nước được coi là không đổi (có giá trị bằng 1000/18≈55,56 Mol/l) nên K[H2O] cũng không đổi và được gọi là hằng số tích nồng độ ion của nước. Các quá trình khác nhau có thể làm biến đổi nồng độ ion Hydro và Hydroxyl trong nước, song tích nồng độ của chúng luôn là một hằng số. Nghĩa là, nếu có một quá trình nào đó làm tăng nồng độ H+ (ví dụ sự phân ly của các muối bicacbonat hoà tan trong nước) thì nồng độ OH- phải giảm tương ứng (và ngược lại), sao cho tích nồng độ của chúng không đổi. Ở trạng thái cân bằng ứng với nhiệt độ 22oC và áp suất 760 mm Hg, nước sạch trung tính có hằng số phân -16 -14 + - -7 ly K ≈ 1,8.10 nên hằng số nồng độ K.[H2O]≈1.10 , do đó [H ]=[OH ]≈10 . Trong môi trường nước tự nhiên nói chung, ion Hydro tồn tại với nồng độ rất nhỏ (bậc nồng độ vào khoảng 10-5-10-9 ion-gam/l, với nước biển là 10-7-10-9 58
  2. ion-gam/l). Bởi vậy để tiện lợi cho việc biểu diễn định lưọng nồng độ của nó người ta sử dụng trị số pH: pH = -lg [H+] Với cách biểu diễn này thì môi trường nước trung tính ([H+]=[OH-]) có pH=7, axít tính ([H+]>[OH-]) có pH [H+]) có pH>7. Trong nước biển, nồng độ ion Hydro (do đó trị số pH) có liên quan chặt chẽ với hàm lượng khí Cacbonic hoà tan, nói đúng hơn, pH nước biển phụ thuộc trực tiếp vào mối tương quan giữa axít Cacbonic (H2CO3) và các dẫn xuất phân ly của nó: + - CO2 + H2O ⇔ H2CO3 ⇔ H + HCO3 - + -2 HCO3 ⇔ H + CO3 Theo định luật tác dụng khối lượng, các hằng số phân ly của axit này là: + - K1 = [H ].[HCO3 ]/[H2CO3] + -2 - K2 = [H ].[CO3 ]/[HCO3 ] o -7 Giá trị K1 đo được tại 22 C và áp suất 760 mmHg là 4.10 , lớn hơn 4 bậc -11 so với giá trị K2 (4,2.10 ). Bởi vậy sự phân ly của axit Cacbonic chủ yếu là phân ly bậc một. Do đó: + - [H ] = K1 [H2CO3]/[HCO3 ] Điều này cho thấy nồng độ ion Hydro phụ thuộc chủ yếu vào nồng độ ion - Bicacbonat (HCO3 ) theo quan hệ tỷ lệ nghịch. Nhưng trong nước biển, nguồn - chính tạo ra ion HCO3 không phải do phân li axit Cacbonic mà do phân li những muối bicacbonát như Ca(HCO3)2, Mg(HCO3)2 vốn có nhiều trong nước. Bởi - + vậy, sự hoà tan các muối này sẽ làm tăng nồng độ HCO3 , do đó giảm [H ] tức là tăng pH, ngược lại, sự hoà tan khí CO2 vào nước biển sẽ làm tăng nồng độ axít + H2CO3 và do đó tăng [H ] tức là giảm pH. Nhiệt độ và áp suất thuỷ tĩnh cũng có ảnh hưởng đáng kể đến pH của nước 59
  3. biển. Nếu nhiệt độ (hoặc cả áp suất) tăng thì hằng số phân li của H2CO3 và H2O tăng lên, dẫn tới pH giảm. Tuy nhiên, nếu nhiệt độ tăng thì độ hoà tan của khí CO2 trong nước biển lại giảm và do đó pH tăng lên. Các hợp phần khác như các axít Boríc (H3BO3), axít Silisíc (H2SiO3), axit Phốtphoric (H3PO4) mặc dù cũng phân ly và tạo ra H+ nhưng chúng ít có ý nghĩa đối với pH nước biển bởi nồng độ của chúng rất nhỏ và hằng số phân li rất bé. Khí Sunfuhydro (H2S) có ảnh hưởng tới pH nhiều hơn, nhưng không phải chỗ nào và bao giờ cũng có. Nước biển, trong đó có hoà tan nhiều axit yếu và các muối của nó, được xem là một dung dịch đệm pH. Nước biển ở mọi vùng trên thế giới đều mang tính kiềm yếu, có pH khá ổn định và thường chỉ biến đổi trong giới hạn rất hẹp (7,6-8,4). Điều này đã dẫn tới việc sử dụng pH như một chỉ số của khối nước. Đối với nước vùng biển ven bờ, nhất là vùng cửa sông, do tỷ lệ thành phần muối Cacbonat rất khác nhau, nên cùng với độ kiềm của nước, pH còn được sử dụng để tính toán sự lan truyền của nước lục địa ở vùng này. Mặc dù tồn tại với nồng độ cực kỳ nhỏ bé, song sự có mặt của ion Hydro trong nước biển đã quyết định rất nhiều tính chất quan trọng của môi trường. Trước hết, pH được xem như cái "nền" trên đó xảy ra các phản ứng hoá học, sinh-hoá học, ví dụ như sự ăn mòn bê tông của nước biển, khả năng hoà tan đất đá ở bờ và đáy, điều kiện tồn tại và phát triển của thuỷ sinh vật trong đó có nhiều loài rất nhạy cảm với sự biến đổi pH nước biển. Do có liên quan chặt chẽ với hàm lượng các axit yếu và muối của chúng có mặt trong nước biển, nhất là axit Cacbonic và các muối Cacbonat, nên pH còn là một thành phần quan trọng trong các mối cân bằng của các hệ cân bằng nói chung, hệ Cacbonat nói riêng trong biển. Hiện nay, Hải dương học đang sử dụng hai phương pháp để xác định trị số pH nước biển: phương pháp đo điện và phương pháp so màu. Phương pháp đo điện là khách quan và chính xác hơn. Tuy nhiên các thiết bị đo pH nước biển có độ chính xác cao (±0,01) và tiện lợi trong việc lắp đặt đồng bộ cùng các thiết bị đo nhiệt độ, độ muối, Ôxy hoà tan lại rất đắt tiền và đòi hỏi những điều kiện kỹ thuật tương thích. Một số thiết bị đo pH cầm tay tuy đơn giản và rẻ tiền 60
  4. nhưng lại không đạt được độ chính xác mong muốn của Hải dương học, mà chỉ có tính chất kiểm tra chất lượng môi trường. Do vậy, trong nhiều trường hợp vẫn phải sử dụng các phương pháp phân tích hoá học để xác định pH nước biển. Phương pháp so màu xác định pH nước biển rất đơn giản, không đòi hỏi những máy móc phức tạp, cồng kềnh mà vẫn đạt độ chính xác cao thoả mãn yêu cầu của Hải dương học. 3.1.2. Phương pháp so màu xác định pH nước biển Nguyên tắc của phương pháp so màu xác định pH nước biển là: có hai dung dịch, trong đó một dung dịch đã biết trước trị số pH, khi cho thêm chỉ thị màu pH vào cả hai dung dịch mà chúng cho màu giống nhau thì trị số pH của dung dịch thứ hai bằng trị số pH của dung dịch thứ nhất. Trong thực tế nghiên cứu hoá học biển, người ta phải chuẩn bị sẵn loạt dung dịch đệm chuẩn có trị số pH khác nhau và sắp xếp chúng theo thứ tự pH tăng dần (hoặc giảm dần) trong một hộp nhỏ, gọi là "bảng các dung dịch đệm chuẩn" hay "hộp bảng mầu". Bảng các dung dịch đệm chuẩn được chế tạo tại phòng thí nghiệm chuyên môn bao gồm nhiều ống nghiệm đường kính như nhau, trong đó chứa các dung dịch đệm đã có chỉ thị màu pH (chỉ thị màu thường là Crezol đỏ hoặc Thymol xanh). Các dung dịch đệm được pha chế với tỷ lệ thích hợp để sao cho pH của bảng biến đổi từ 7,60-8,55 (bước 0,05 đơn vị pH). Khoảng trị số pH như trên bao hàm tất cả các giá trị pH thường gặp và quan trắc được ở mọi vùng biển. Hộp bảng các dung dịch đệm chuẩn cần được bảo quản hết sức cẩn thận và chỉ được mở ra lúc so màu. Nếu màu của bảng bị biến đổi so với lúc chế tạo thì phải thay nó bằng bảng màu mới, đương nhiên có thể chỉ cần thay một vài dung dịch đệm của bảng nếu chúng bị hỏng. Tuy vậy, không nên sử dụng bảng màu quá 6 tháng mà không được kiểm tra lại. 3.1.3. Dụng cụ và hoá chất Hộp bảng các dung dịch đệm chuẩn 61
  5. Toàn bộ hộp bao gồm các dụng cụ và hoá chất sau: a- Bộ dung dịch đệm chuẩn đã có chỉ thị màu chứa trong các ống nghiệm thuỷ tinh trung tính, không màu và được hàn kín, khoảng pH từ 7,60 đến 8,55, bước là 0,05 đơn vị pH. b- Dung dịch chỉ thị (hai lọ). Cần chú ý là phải sử dụng đúng dung dịch chỉ thị đã dùng để nhuộm màu các dung dịch đệm chuẩn của hộp bảng màu. c- Pipet dung tích 0,5 ml để lấy dung dịch chỉ thị, 2 chiếc. d- Nhiệt biểu bách phân có kiểm định, 2 chiếc. e- Giá đỡ bằng gỗ có những lỗ cắm để bảo vệ các ống nghiệm, Pipet, nhiệt kế, lọ chất chỉ thị. Trong điều kiện Việt Nam, khi không có được hộp bảng màu tiêu chuẩn như đã mô tả, ta vẫn có thể chuẩn bị được dụng cụ này với độ chính xác tương tự để phục vụ kịp thời cho các đợt khảo sát. Các hoá chất để chuẩn bị các dung dịch đệm của bảng màu gồm: - Dung dịch axit Boric (H3BO3) 0.1 N - Dung dịch muối Borac (Na2B4O7.10H2O) 0.1 N - Dung dịch chỉ thị Crezol đỏ 0,02 % Các dung dịch cơ sở này được chuẩn bị từ chế phẩm tinh khiết và đựng trong các lọ thuỷ tinh màu có nút mài. Cần chú ý là chỉ chuẩn bị chúng trước khi pha chế thành bộ dung dịch đệm chuẩn. Muốn tạo ra các dung dịch đệm có pH mong muốn, ta hoà trộn các dung dịch axit Boric và muối Borat với những thể tích khác nhau theo chỉ dẫn ở bảng 3.1. Bảng 3.1: Tỷ lệ pha chế các dung dịch đệm chuẩn pH Thể tích cần lấy (ml) pH Thể tích cần lấy (ml) mong muốn H3BO3 Na2B4O7 mong muốn H3BO3 Na2B4O7 7.60 8.50 1.50 8.10 6.92 3.08 62
  6. pH Thể tích cần lấy (ml) pH Thể tích cần lấy (ml) mong muốn H3BO3 Na2B4O7 mong muốn H3BO3 Na2B4O7 7.65 8.38 1.62 8.05 6.72 3.28 7.70 8.24 1.76 8.20 6.50 3.50 7.75 8.10 1.90 8.25 6.28 3.72 7.80 7.95 2.05 8.30 6.06 3.94 7.85 7.80 2.20 8.35 5.82 4.18 7.90 7.64 2.36 8.40 5.57 4.43 7.95 7.47 2.53 8.45 5.32 4.68 8.00 7.30 2.70 8.50 5.06 4.94 8.05 7.12 2.88 8.55 4.79 5.21 Để chế tạo hộp bảng mầu, trước hết cần chuẩn bị loạt ống nghiệm thuỷ tinh trung tính, sạch, khô, có kích thước hoàn toàn giống nhau. Dùng Pipet tự động lấy 0,5 ml Crezol 0,02 % cho vào ống nghiệm, sau đó cho tiếp dung dịch H3BO3 và Na2B4O7 theo tỷ lệ như bảng trên, ta có được một dung dịch đệm có pH xác định và đã có chỉ thị màu. Ngay lập tức nút ống nghiệm lại bằng nút cao su hoặc nút bấc và phủ kín nút bằng Parafin sao cho không khí không lọt vào ống nghiệm. Lắc đều ống nghiệm để hoà trộn dung dịch và ghi trị số pH của dung dịch đệm lên mép trên của ống nghiệm. Tiếp tục chuẩn bị các dung dịch đệm khác. Trong quá trình chế tạo bảng màu, nhất thiết phải theo dõi và ghi lại nhiệt độ phòng thí nghiệm. Sự ổn định nhiệt độ phòng thí nghiệm lúc chế tạo bảng màu là tiêu chuẩn đảm bảo độ chính xác của bảng. Toàn bộ thông tin khi chế tạo bảng mầu cần được lập thành hồ sơ. Với trị số pH từ 7,60 đến 8,55, bước 0,05, hộp bảng màu mà chúng ta chuẩn bị được như đã mô tả có độ chính xác cao và sử dụng được ở tất cả các vùng biển Việt Nam. Tuy nhiên, vẫn rất cần kiểm tra độ chính xác của dung dịch đệm bằng phương pháp đo điện, đồng thời cũng không nên sử dụng nó sau hai 63
  7. tháng kể từ khi chế tạo mà không có sự kiểm tra. Bộ ống nghiệm để lấy mẫu Các ống nghiệm thuỷ tinh trung tính, không màu có đường kính đồng nhất và bằng đường kính của các ống nghiệm chứa dung dịch đệm chuẩn trong hộp bảng màu. Các ống nghiệm này cần được đánh số và có vạch mức bằng với chiều cao của cột dung dịch đệm chuẩn. Mỗi ống nghiệm phải có một nút riêng, thường là nút cao su. Ống cao su nhỏ để dẫn nước. Hộp so màu (Comparat), hình 3.1: Đây là dụng cụ trợ giúp cho việc so màu bằng mắt xác định trị số pH của các mẫu nước lấy ở vùng biển ven bờ, cửa sông có màu vàng tự nhiên do các hạt lơ lửng, phù sa tạo nên. Hình 3.1 Comparat dùng để so màu xác định pH nước biển 3.1.4. Lấy mẫu nước và xác định pH Với mục đích xác định pH, mẫu nước cần được ưu tiên lấy trước các mẫu khác và lấy ngay sau khi kéo máy lấy nước từ dưới biển lên. Sự ưu tiên này nhằm hạn chế khả năng thâm nhập CO2 từ khí quyển vào mẫu. Trước hết cần chuẩn bị sẵn bộ ống nghiệm sạch, khô để lấy mẫu, số lượng ống nghiệm tương ứng số mẫu cần lấy (các ống nghiệm lấy mẫu phải hoàn toàn tương tự các ống nghiệm của bảng mầu). Lắp ống dẫn nước vào máy lấy nước và mở van để tráng ống dẫn và các ống nghiệm. Sau khi đã tráng ống nghiệm 2- 3 lần bằng chính nước mẫu cần lấy, dùng Pipet lấy một lượng chỉ thị màu theo chỉ dẫn ghi trong hồ sơ hộp bảng màu (thường là 0,5 ml) cho vào ống nghiệm 64
  8. (đối với bảng màu mà chúng ta chuẩn bị như đã mô tả ở mục 3.1.3 thì phải lấy 0,5 ml Crezol 0,02%, tức là đúng bằng lượng chỉ thị đã sử dụng khi chế tạo bảng màu). Sau đó lấy nước mẫu qua ống cao su vào ống nghiệm cho đến vạch mức (không được để tia nước quá mạnh và sủi bọt trong ống nghiệm). Đậy kín ống nghiệm bằng nút cao su và khuấy trộn hỗn hợp bằng cách lắc đều mà không được đảo hoặc xúc ống nghiệm. Tiếp tục lấy mẫu khác (nếu có) với quy trình hoàn toàn tương tự. Sau khi màu của mẫu đã hoà trộn đều, có thể tiến hành so màu với bảng chuẩn ngay tại hiện trường hoặc đưa mẫu đến nơi quy định để so màu. Toàn bộ quá trình này phải được thực hiện nhanh chóng để nhiệt độ của mẫu nước lúc phân tích (so màu) không khác nhiều so với nhịêt độ in situ của nó. Tuy vậy, người ta vẫn phải đo nhiệt độ của mẫu nước lúc phân tích để tính toán các số hiệu chỉnh pH. Muốn vậy đồng thời với việc lấy mẫu nước như đã mô tả, ngưòi ta còn lấy chính mẫu nước đó vào một ống nghiệm khác (ống này không cần cho chỉ thị màu) và cắm vào đó một nhiệt biểu. Ống nghiệm có cắm nhiệt biểu và ống nghiệm có nước phân tích luôn luôn để cạnh nhau. Do vậy, chỉ cần đọc nhiệt biểu này lúc phân tích mẫu là ta có nhiệt độ của mẫu nước tại thời điểm phân tích. Quá trình so màu của mẫu nước với bảng chuẩn được tiến hành như sau: Cầm lấy đầu trên của ống nghiệm có mẫu phân tích (để tránh làm nóng mẫu bằng nhiệt độ của tay mình), đưa nó lại gần bộ dung dịch đệm chuẩn và dừng lại tại vị trí mà màu sắc của chuẩn và mẫu gần trùng nhau. Sau đó chọn ra hai ống nghiệm dung dịch chuẩn của bảng có màu gần nhất với màu của mẫu, trong đó một ống có màu axit hơn và một ống có màu kiềm hơn. Ống nghiệm có nước phân tích được đặt giữa hai ống nghiệm chuẩn đã lựa chọn và tất cả được đặt trước nền trắng để nhìn cho dễ. Cần chú ý là không để ánh sáng mặt trời trực tiếp rọi vào. Trị số pH của mẫu nước được xác định nhờ phép nội suy bằng mắt. Khi nội suy, cần phải chú ý cả màu sắc lẫn cường độ màu. Ví dụ màu của mẫu nằm giữa khoảng màu của hai dung dịch đệm chuẩn có pH bằng 8,30 và 8,35, và nếu không còn khả năng nào để giải quyết sự gần nhau hơn nữa về màu sắc của chuẩn và mẫu thì có thể kết luận pH của mẫu bằng 8,33. Nếu màu của mẫu nghiêng về phía màu của chuẩn có pH bằng 8,30 thì pH của mẫu là 8,32, nếu 65
  9. gần hơn nữa - 8,31. Ghi kết quả phân tích vào sổ, kèm theo đó ghi luôn cả nhiệt độ in situ, nhiệt độ mẫu lúc phân tích (như đã nói ở trên) và nhiệt độ của bảng màu lúc phân tích. Để có được nhiệt độ bảng màu lúc phân tích, người ta cắm một nhiệt biểu vào một ống nghiệm chứa nước cất và trong suốt thời gian khảo sát luôn luôn đặt ống nghiệm này cạnh bộ ống nghiệm dung dịch chuẩn của hộp bảng màu. Lúc phân tích chỉ cần đọc nhiệt biểu ở ống nghiệm này là có được nhiệt độ của bảng màu tại thời điểm phân tích. Sau khi phân tích xong, đậy ngay nắp hộp bảng màu lại (để tránh sự tiếp xúc quá lâu của nó với ánh sáng) và rửa sạch các ống nghiệm có nước mẫu. Những vùng nước gần bờ, nhất là vùng cửa sông, mẫu nước lấy lên thường có màu vàng tự nhiên do có nhiều hạt lơ lửng, phù sa nên việc so màu bằng mắt trong trường hợp này gặp khó khăn. Để loại trừ ảnh hưởng của màu tự nhiên kể trên, ngoài việc lấy 1 mẫu nước để phân tích như đã nêu trên cần lấy thêm 2 mẫu nước cho vào hai ống nghiệm nhưng không thêm chỉ thị màu và lấy nước cất cho vào một một ống nghiệm khác. Việc so màu được thực hiện nhờ Comparat. Vị trí các ống nghiệm có chứa mẫu nước phân tích, nước cất, nước biển không có chỉ thị màu và hai dung dịch đệm chuẩn đã chọn sơ bộ được đặt trong Comparat như sơ đồ hình 3.2. Với cách bố trí như vậy, tia sáng trước khi tới mắt người phân tích đều phải đi qua các lớp dung dịch có tính chất như nhau, đó là lớp nước biển có màu tự nhiên (cũng là mẫu nước) và lớp nước cất (cũng là dung dịch chuẩn). Nước biển có màu tự nhiên Nước biển có màu tự nhiên và không có chất chỉ thị Nước cất và không có chất chỉ thị Chuẩn 2 Chuẩn 1 Mẫu phân tích Tia sáng đi qua các dung dịch tới mắt người phân tích Hình 3.2: Sơ đồ vị trí các ống nghiệm chứa mẫu và chuẩn trên Comparat 66
  10. Vào mùa đông, khi không có các điều kiện thuận lợi về ánh sáng và thời tiết dẫn đến không thể phân tích pH ngay tại hiện trường, người ta phải lấy mẫu vào bình có thể tích khoảng 100 ml, có nút cao su kín hoặc nút thuỷ tinh mài. Trước khi đậy nút, cần cho thêm vào mẫu 3-4 giọt Clorofooc (CHCl3). Mẫu này được bảo quản ở nơi tối và nhiệt độ không cao. Tuy vậy, mẫu nước cần được phân tích càng sớm càng tốt và không được để quá 24 giờ kể từ khi lấy mẫu. Trước khi phân tích những mẫu nước này, nhiệt độ của mỗi một mẫu nhất thiết phải được đo và phải ghi vào sổ với lời chú giải là việc xác định pH được tiến hành sau thời gian bao lâu kể từ khi lấy mẫu. 3.1.5. Tính toán kết quả Trị số pH tìm được qua việc so màu như đã mô tả ở trên (ký hiệu là pHQT) chưa phải là giá trị pH thật của mẫu, bởi vì, kết quả này chưa tính đến sự thay đổi pH do nhiệt độ và độ muối, là hai nhân tố có ảnh hưởng đáng kể đến pH nước biển. Vì vậy, cần phải đưa thêm vào kết quả phân tích các số hiệu chỉnh. Số hiệu chỉnh pH theo độ muối (ký hiệu ΔpHS) Do pha chế các dung dịch đệm chuẩn bằng nước cất nên độ muối của chúng nhỏ hơn nhiều so với độ muối của nước biển và do vậy lượng ion nói chung của dung dịch đệm chuẩn cũng nhỏ hơn. Điều đó có ảnh hưởng đáng kể đến hoạt tính của các ion Hydro. Ngoài ra, độ muối của nước biển còn ảnh hưởng đến sự phân ly của chất chỉ thị và do vậy ảnh hưởng tới màu sắc của mẫu nước phân tích. Hội đồng Uỷ ban Quốc tế Nghiên cứu biển năm 1958 đã công nhận số hiệu chỉnh ΔpHS do độ muối gây ra đối với nước đại dương có độ muối 35%o là -0,26 pH. Người ta cũng đã tính sẵn số hiệu chỉnh này theo các giá trị độ muối khác nhau và ghi lại thành bảng (bảng 3.2). Chỉ cần biết độ muối nước biển, tra bảng này sẽ có được số hiệu chỉnh ΔpHS. Bảng 3.2: Số hiệu chỉnh ΔpHS theo các giá trị độ muối khác nhau S%o ΔpHs S%o ΔpHs S%o ΔpHs S%o ΔpHs 0,2 +0,20 8 -0,09 19 -0,20 30 -0,24 0,4 +0,18 9 -0,11 20 -0,20 31 -0,25 67
  11. S%o ΔpHs S%o ΔpHs S%o ΔpHs S%o ΔpHs 0,6 +0,16 10 -0,12 21 -0,21 32 -0,25 0,8 +0,14 11 -0,13 22 -0,21 33 -0,26 1 +0,12 12 -0,14 23 -0,22 34 -0,26 2 +0,06 13 -0,15 24 -0,22 35 -0,26 3 +0,02 14 -0,16 25 -0,23 36 -0,26 4 -0,01 15 -0,17 26 -0,23 37 -0,26 5 -0,04 16 -0,18 27 -0,23 38 -0,26 6 -0,06 17 -0,19 28 -0,24 - - 7 -0,08 18 -0,19 29 -0,24 - - Các số hiệu chỉnh pH theo nhiệt độ: Có 3 loại số hiệu chỉnh pH theo nhiệt độ: Số hiệu chỉnh thứ nhất (ký hiệu ΔpHT) gây ra do sự thay đổi nhiệt độ của bảng màu lúc phân tích (Tb) so với lúc chế tạo. Sự thay đổi này dẫn đến sự thay đổi hằng số phân ly của axit Boric và muối Borac có trong dung dịch đệm chuẩn. Số hiệu chỉnh ΔpHT đã được tính sẵn theo giá trị Tb và cho thành bảng, ví dụ bảng 3.3 đối với loại hộp bảng màu chế tạo ở 18oC. Chỉ cần có nhiệt độ hộp bảng màu lúc phân tích, tra bảng này ta sẽ có số hiệu chỉnh thứ nhất. Số hiệu chỉnh thứ hai gây ra do chênh lệch nhiệt độ của mẫu nước với nhiệt độ của dung dịch đệm chuẩn của hộp bảng màu tại thời điểm so màu. Sự chênh lệch nhiệt độ này có ảnh hưởng đến mức độ phân ly của chất chỉ thị trong mẫu và trong dung dịch chuẩn và do vậy ảnh hưởng đến màu sắc. Số hiệu chỉnh này được xác định bằng biểu thức α(Tb-Tw') trong đó Tb và Tw′ là nhiệt độ của bảng mầu và của mẫu tại thời điểm phân tích, α - hệ số nhiệt độ của sự biến đổi pH gây ra do biến đổi hằng số phân ly của chất chỉ thị - đó là sự thay đổi pH khi nhiệt độ thay đổi 1oC. Với Crezol đỏ, α = +0,009, với Thymol xanh α = +0,008. Số hiệu chỉnh thứ 2 cũng được tính sẵn theo hiệu (Tb-Tw') và cho thành bảng (bảng 3.4). 68
  12. Bảng 3.3: Số hiệu chỉnh ΔpHT theo nhiệt độ bảng màu (Tb) tại thời điểm phân tích (so với lúc chế tạo tại 18oC) Tb pHQT o ( C) 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5 8,6 16 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,02 18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 20 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,02 22 -0,01 -0,01 -0,02 -0,02 -0,02 -0,02 -0,02 -0,02 -0,03 -0,03 24 -0,02 -0,02 -0,03 -0,03 -0,03 -0,03 -0,03 -0,04 -0,04 -0,04 26 -0,03 -0,03 -0,03 -0,04 -0,04 -0,04 -0,05 -0,05 -0,05 -0,05 28 -0,03 -0,04 -0,04 -0,04 -0,05 -0,05 -0,06 -0,06 -0,06 -0,06 30 -0,04 -0,05 -0,05 -0,05 -0,06 -0,06 -0,07 -0,07 -0,07 -0,08 Bảng 3.4: Số hiệu chỉnh pH theo hiệu nhiệt độ bảng màu và mẫu nước α (Tb-Tw') tại thời điểm phân tích (Crezol đỏ: α = +0,009, Thymol xanh: α = +0,008) o o tb - tw' ( C) Crezol-đỏ Thymol-xanh tb - tw' ( C) Crezol-đỏ Thymol-xanh 1 0,01 0,01 11 0,10 0,09 2 0,02 0,02 12 0,11 0,10 3 0,03 0,02 13 0,12 0,10 4 0,04 0,03 14 0,13 0,11 5 0,04 0,04 15 0,14 0,12 6 0,05 0,05 16 0,14 0,13 7 0,06 0,06 17 0,15 0,14 8 0,07 0,06 18 0,16 0,14 9 0,08 0,07 19 0,17 0,15 10 0,09 0,08 20 0,18 0,16 Số hiệu chỉnh thứ ba gây ra do sự thay đổi nhiệt độ mẫu nước lúc phân tích 69
  13. so với nhiệt độ in situ của nó. Sự thay đổi này ảnh hưởng đến hằng số phân ly của nước và của axit Cacbonic. Số hiệu chỉnh thứ 3 được xác định bằng biểu thức γ(Tw'-Tw) trong đó Tw là nhiệt độ in situ của mẫu nước và Tw′ là nhiệt độ mẫu tại thời điểm phân tích, γ - hệ số nhiệt độ của sự biến đổi pH gây ra do biến đổi hằng số phân ly của nước và của axit Cacbonnic. Trị số γ đo được bằng -0,01 và số hiệu chỉnh thứ ba cũng được tính sẵn theo hiệu (Tw'-Tw), cho thành bảng (bảng 3.5). Bảng 3.5: Số hiệu chỉnh pH theo hiệu của nhiệt độ in situ và nhiệt độ mẫu tại thời điểm phân tích γ (Tw'-Tw) Tw' - Tw pHQT (oC) 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 1 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 2 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 3 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 4 0,03 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 5 0,04 0,04 0,05 0,05 0,05 0,05 0,05 0,06 0,06 6 0,05 0,05 0,06 0,06 0,06 0,06 0,06 0,07 0,07 7 0,06 0,06 0,07 0,07 0,07 0,07 0,07 0,08 0,08 8 0,07 0,07 0,07 0,08 0,08 0,08 0,08 0,09 0,09 9 0,08 0,08 0,08 0,09 0,09 0,09 0,10 0,10 0,10 10 0,09 0,09 0,09 0,10 0,10 0,10 0,11 0,11 0,11 11 0,09 0,10 0,10 0,11 0,11 0,11 0,12 0,12 0,12 Sau khi đã tìm được tất cả các số hiệu chỉnh, trị số pH thực của mẫu nước được xác định theo công thức: pH = pHQT + ΔpHS + ΔpHT + α(Tb-Tw') + γ(Tw'-Tw) (3.1) Công thức này do K. Bukhơ đề nghị và đã được Hội đồng Quốc tế Nghiên cứu biển công nhận. Trong công thức trên, pHQT là trị số pH tìm được qua so 70
  14. màu bằng mắt; ΔpHS - hiệu chỉnh pH theo độ muối; 3 đại lượng còn lại là các số hiệu chỉnh pH theo nhiệt độ. Biểu diễn pH nước biển theo công thức (3.1) rất tiện lợi cho việc tính toán các dạng tồn tại của axit Cacbonic và các đặc trưng cân bằng của hệ Cacbonát trong biển. Ngoài cách biểu diễn trên người ta còn biểu diễn trị số pH tại 0oC (ký hiệu pHo). Biểu diễn ở dạng pHo đã loại trừ ảnh hưởng của nhiệt độ và bởi thế nó hoàn toàn phản ánh sự thay đổi tỷ lệ của khí CO2 hoà tan và các dạng dẫn xuất của axit Cacbonic (HCO3', CO3''). pHo = pH + βTw (3.2) Trong đó β là hệ số nhiệt độ của sự thay đổi pH khi quy chuyển về 0oC. Giá trị β được tính sẵn theo các trị số pH tính từ công thức (3.1) và cho thành bảng (bảng 3.6) Bảng 3.6: Giá trị hệ số β khi quy chuyển về pHo pH 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 β(10-4) 86 90 93 96 100 103 106 110 113 116 120 Ví dụ: Độ muối của mẫu nước là 26%o. Nhiệt độ in situ của mẫu là o o Tw=25 C, nhiệt độ tại thời điểm so mầu của bảng mầu là Tb=28 C, của mẫu nước o là Tw'=26 C. Kết quả so màu là pHQT = 8,10. - Tra các bảng đã dẫn ứng với các thông tin trên ta có: ΔpHS=-0,23; ΔpHT=- 0,05; α(Tb-Tw') =+0,02; γ(Tw'-Tw)=+0,01. Thay các giá trị này vào công thức (3.1) ta có trị số pH thực của mẫu nước là: pH= 7,85 - Giá trị hệ số β (nội suy từ bảng 3.6) ứng với pH=7,85 là 0,00945. Theo công thức 3.2 ta có pHo= 8,086. 3.1.6. Thứ tự công việc Bước 1: Chuẩn bị các dụng cụ, thiết bị và hoá chất cần thiết. 71
  15. Bước 2: Mắc ống cao su nhỏ vào máy lấy nước, tráng ống cao su và ống nghiệm lấy mẫu 2-3 lần bằng chính nước mẫu cần lấy. Bước 3: Lấy mẫu a) Cho vào ống nghiệm cần lấy mẫu một lượng chất chỉ thị mầu đúng như chỉ dẫn ở hộp bảng chuẩn, sau đó lấy mẫu nước phân tích vào đến vạch mức. Nhất thiết không được để tia nước tạo thành các bọt khí trong ống nghiệm. Ngay lập tức đậy nút ống nghiệm lại để tránh sự xâm nhập của Cacbonic từ khí quyển vào mẫu. b) Lấy tiếp nước phân tích vào một ống nghiệm khác và cắm vào đó một nhiệt biểu. Ống nghiệm có mẫu nước phân tích và ống nghiệm có nhiệt biểu luôn luôn được để cạnh nhau để chúng có cùng nhiệt độ. c) Nếu mẫu có màu vàng tự nhiên thì phải lẫy tiếp nước mẫu vào 2 ống nghiệm nữa (trường hợp này phải so màu trên Comparat). Bước 4: Lắc đều ống nghiệm có mẫu và chất chỉ thị để hoà trộn. Lặp lại từ bước 2 cho mẫu tầng khác (nếu có). Chuyển tất cả đến nơi phân tích. Bước 5: Cách so màu như đã mô tả ở phần quá trình xác định. Ghi giá trị pH tìm được và nhiệt độ in situ, nhiệt độ bảng màu, nhiệt độ mẫu lúc phân tích vào sổ quan trắc. Bước 6: Việc tính toán kết quả có thể thực hiện sau ngày làm việc. Kết quả tính phải có người thứ hai kiểm tra. 3.2. XÁC ĐỊNH ĐỘ KIỀM NƯỚC BIỂN 3.2.1. Giới thiệu chung Nước biển và đại dương có khả năng trung hoà được một lượng nào đó axit thêm vào nó. Khả năng này do một số hợp phần mang tính bazơ tạo ra và người ta gọi khả năng đó là "độ kiềm" của nước biển. Khả năng nhận thêm Proton (H+) của nước biển có được chính là do sự có mặt trong nước các anion của các axít yếu. Có thể biểu diễn định lượng độ kiềm chung của nước biển (ký hiệu Alk) 72
  16. như sau: - -2 - - Alk = [HCO3 ] + 2[CO3 ] + [H2BO3 ] + [HSiO3 ] + - -2 - - + [H2PO4 ] + 2[HPO4 ] + [HS ] + ([OH ]-[H ]) Ở đây cần phân biệt rõ khái niệm độ kiềm với tính chất môi trường kiềm (yếu) của nước biển. Môi trường mang tính chất kiềm, trung tính hay axit được quyết định bởi nồng độ ion Hydro (pH), còn độ kiềm là tổng nồng độ các anion của các axit yếu có mặt trong nước biển. Trong số các thành phần tạo nên độ kiềm chung của nước biển như trên, có - -2 ý nghĩa nhất chính là các anion HCO3 và CO3 của axit Cacbonic (H2CO3) và - anion H2BO3 của axit Boric (H3BO3) bởi chúng có hàm lượng lớn nhất. Các anion khác có hàm lượng không đáng kể nên thường bị bỏ qua, chỉ được tính đến trong một số trường hợp cần thiết. Do đó độ kiềm chung của nước biển được coi gần đúng là tổng của độ kiềm Cácbonat và độ kiềm Borac: Alk = AlkC + AlkB - -2 Trong đó: AlkC = [HCO3 ]+ 2 [CO3 ] là độ kiềm Cacbonat; - AlkB = [H2BO3 ] là độ kiềm Borac. Về mặt định lượng, độ kiềm được xác định bằng số miligam đương lượng của các anion của các axit yếu (chủ yếu là của axit H2CO3 và H3BO3) có trong 1 lít nước biển (meg/l). Giá trị tuyệt đối của độ kiềm được đo bằng lượng axít mạnh (ví dụ HCl) cần thiết để thêm vào 1 lít mẫu nước biển cho tới khi pH của mẫu ổn định trong khoảng 5,5 đến 5,7. Ngoài cách biểu diễn trị số tuyệt đối của độ kiềm như trên, người ta còn biểu diễn bằng trị số tương đối. Đó là các hệ số kiềm Alk/S (hệ số kiềm-muối) hoặc Alk/Cl (hệ số kiềm-Clo) hay Alk/SO4 (hệ số kiềm-sunfat), trong đó S, Cl và SO4 tương ứng là độ muối, độ Clo và hàm lượng ion Sunfat của nước biển. Độ kiềm nước biển và đại dương khá ổn định do tính ổn định của các anion Cacbonat, nó thường chỉ dao động trong khoảng 2,0 đến 2,5 meg/l. Tương tự 73
  17. như vậy, hệ số kiềm cũng thường là hằng số đối với nước đại đương. Tuy nhiên, ở các vùng nước gần bờ, các vịnh kín, các vùng cửa sông hệ số kiềm biến đổi trong giới hạn rất rộng (có thể từ vài nghìn đến hàng trăm nghìn). Ví dụ nước vịnh Taganôp của biển Azôp có hệ số kiềm-Clo biến đổi từ 4385 đến 134000. Độ kiềm (hoặc các hệ số kiềm) của nước biển được sử dụng (cùng với pH) để tính toán các dạng tồn tại của axit Cacbonic trong nước biển. Ngoài ra độ kiềm còn được sử dụng trong các tính toán về cân bằng CO2, cân bằng hệ Cacbonat, tính mức độ xáo trộn nước ở vùng gần bờ, cửa sông. Do tính ổn định cao của độ kiềm trong nước biển nên nó còn được sử dụng như một chỉ số của khối nước. 3.2.2. Phương pháp xác định độ kiềm nước biển Như trên đã nêu, giá trị tuyệt đối của độ kiềm nước biển được đo bằng lượng axít mạnh (ví dụ HCl) cần thiết để thêm vào 1 lít nước biển cho tới khi pH ổn định trong khoảng 5,5 đến 5,7. Bởi vậy, nguyên tắc của phương pháp xác định độ kiềm là chuẩn độ trực tiếp mẫu nước biển bằng dung dịch axit Clohydric (HCl) có nồng độ biết trước, khi đó phản ứng giữa HCl với các muối của các axit yếu trong mẫu nước sẽ xảy ra. Ví dụ đối với các muối của axit Cacbonic (kí hiệu các muối này là RHCO3 trong đó R là cation kim loại nào đó), phản ứng xảy ra như sau: RHCO3 + HCl → RCl + CO2↑ + H2O (3.I) Để phản ứng trên chỉ xảy ra một chiều, cần phải đuổi khí CO2 mới được tạo thành ra khỏi chất lỏng đang bị chuẩn độ, nếu không, sự xuất hiện của nó trong hỗn hợp sẽ tạo thành axit Cacbonic và muối của axit này, sẽ làm tiêu hao thêm một lượng HCl nào đó. Để đuổi CO2 ra khỏi chất lỏng, trong quá trình chuẩn độ mẫu nước người ta không ngừng thổi vào mẫu những luồng không khí không có CO2. Thời điểm kết thúc quá trình chuẩn độ được nhận biết nhờ thuốc chỉ thị màu hỗn hợp (sẽ nói tới ở mục 3.2.4). 74
  18. 3.2.3. Dụng cụ và thiết bị - Mirco Biuret dung tích 10ml, có độ chia 0,01ml. Biuret phải được kiểm định và có hồ sơ hiệu chỉnh kèm theo. Không khí không có CO 2 Hình 3.3: Bình chuẩn độ xác định độ kiềm nước biển - Các Pipet 100 ml, 20 ml, 10 ml, 1 ml mỗi loại 1 chiếc, tất cả đều được kiểm định và có hiệu chỉnh kèm theo. - Các bình định mức 1 l, 0,5 l, 0,25 l đã được kiểm định và hiệu chỉnh. - Bình chuẩn độ thể tích khoảng 30 ml có ống để thổi không khí không có CO2 vào (hình 3.3). - Các dụng cụ thông thường khác của phòng thí nghiệm. Tất cả các bình đong, chai lọ phải rửa cẩn thận và được sấy khô trước lúc làm việc. Nếu chai lọ sử dụng lần đầu thì sau khi rửa sạch phải nạp đầy nước cất và giữ nguyên hiện trạng từ 10-12 ngày để loại trừ hiện tượng hoà tan thuỷ tinh. 3.2.4. Hoá chất Dung dịch chuẩn chính axit Clohydric (HCl) 0,1N 75
  19. Dung dịch này được chuẩn bị từ 8,3 ml axit HCl đậm đặc (tỷ trọng 1,19) để hoà với nước cất thành 1 lít. Chỉ được cho axít vào nước mà không được làm ngược lại. Dung dịch chuẩn làm việc axit Clohydric 0,02N Dung dịch này được chuẩn bị từ 100 ml dung dịch chuẩn chính để hoà với nước cất thành 500 ml. Dung dịch chuẩn làm việc được bảo quản trong bình có tráng Parafin ở phía trong, có nút cao su kín. Khi làm việc cần thay nút cao su kín bằng nút cao su có 2 lỗ cắm, 1 lỗ cắm ống nối với Biuret và lỗ còn lại cắm ống thuỷ tinh bên trong có chứa vôi tôi xút. Dung dịch muối Borac 0,02N (Na2B4O7.10 H2O) Dung dịch này còn được gọi là Bura, dùng để xác định hệ số hiệu chỉnh nồng độ của dung dịch HCl. Độ chính xác của việc xác định độ kiềm nước biển chủ yếu phụ thuộc vào Bura. Lấy chính xác 0,9536 gam Borac kết tinh cho vào bình đong 250 ml, bổ sung nước cất cho đến đến vạch mức. Thể tích bình đong phải được kiểm định và có hiệu chỉnh. Hệ số hiệu chỉnh độ chuẩn của dung dịch Borac (KB) được tính theo công thức sau: KB = V/(V1 + Δ) (3.3) Trong đó V là thể tích quy ước của bình (250 ml), V1-thể tích thực của bình, Δ-hiệu chỉnh thể tích thực của bình theo nhịêt độ. Ví dụ: Thể tích bình đong theo quy ước là loại V=250ml; thể tích thực của o bình sau khi kiểm tra lại là V1=249,88 ml; tại 25 C hiệu chỉnh thể tích bình là o Δ25=-0,26 nên KB=1,0015. Tại 16 C có Δ16=+0,16 nên KB=0,9998. Cần chú ý trước khi pha thành dung dịch, muối Borac phải được kết tinh lại ở nhiệt độ không quá 55oC, chỉ có điều kiện đó thì mới có tinh thể Borac ngậm 10 phân tử H2O. 76
  20. Thuốc chỉ thị màu hỗn hợp Lấy 32 mg Metyl đỏ, khô trộn với 1,18 ml NaOH 0,1N trong chén mã não hoặc chén sứ. Sau khi nghiền kĩ hỗn hợp thành một thể thống nhất thì rửa chén bằng 80 ml rượu Etylic 96%, sau đó cho thêm vào hỗn hợp thu được 4,8ml cồn có chứa 0,1% Metylen xanh. Cồn có chứa 0,1% Metylen xanh được chuẩn bị bằng cách hoà 0,1g Metylen xanh khô với 100 ml rượu Etylic 96%. Thuốc chỉ thị màu hỗn hợp phải trung tính, tức là phải có màu giữa xanh lá cây nhạt và nâu. Nếu thuốc có màu xanh lá cây nhạt, nghĩa là nó quá kiềm, ta phải nhỏ dung dịch HCl 0,1N vào đó cho đến màu qui định, nếu có màu nâu - quá axit, ta phải cho thêm dung dịch NaOH 0,1N vào nó. Thuốc chỉ thị màu hỗn hợp rất hay bị mất phẩm chất nên không được chuẩn bị quá nhiều. Khi thấy có sự sai lệch (đổi màu, vẩn đục) thì phải chuẩn bị thuốc mới. Thuốc được bảo quản trong bình xẫm mầu. Vôi tôi xút Hoá chất này dùng để loại khí Cacbonic ra khỏi luồng không khí thổi vào chất lỏng trong quá trình chuẩn độ. Vôi tôi xút phải khô và cần được rây kỹ, lọc bụi để trở thành dạng bột, hạt nhỏ và mịn. Hoá chất được bảo quản trong bình có nút bấc, mặt ngoài nút được hàn kín bằng Parafin để hơi nước trong không khí không làm hỏng nó. Để kiểm tra chất lượng vôi tôi xút, người ta cho nó vào một ống thuỷ tinh, nhúng một đầu ống vào nước Bari và thổi không khí qua đó trong vòng 5-10 phút. Nếu nước Bari không đổi màu thì chế phẩm tốt. Nước Bari được chuẩn bị từ 4 gam Ba(OH)2 hoà với 100 ml nước cất không có CO2 (là nước cất mới được đun sôi trong vòng nửa giờ). Nước Bari thu được phải trong suốt, nếu đục phải để lắng đọng và gạn lấy phần trong. 3.2.5. Lấy và bảo quản mẫu nước Mẫu nước biển để xác định độ kiềm thường được lấy sau các mẫu xác định pH và Ôxy hoà tan. Bình đựng mẫu bằng thuỷ tinh màu xanh hay da cam (vì 77
  21. chúng ít bị ăn mòn), dung tích khoảng 300-500ml. Bình mẫu cần được ngâm liên tục nước biển cho đến lúc sử dụng và trước khi lấy mẫu nó phải được tráng 2-3 lần bằng chính nước mẫu cần lấy. Mẫu nước phải được lấy đầy bình để trong bình không còn không khí. Sau khi lấy mẫu có thể tiến hành xác định độ kiềm ngay. Trường hợp không phân tích ngay được thì có thể giữ mẫu trong một khoảng thời gian nào đó với điều kiện nước mẫu không bay hơi mất và không có sự trao đổi CO2 giữa mẫu với khí quyển. Muốn vậy, nút bình phải kín và phải được phủ bằng Parafin. Mặt khác, để tránh làm biến đổi hàm lượng CO2 trong mẫu do các quá trình sinh hoá học, cần phải bảo quản mẫu nơi tối và nhiệt độ thấp. 3.2.6. Quá trình xác định Xác lập độ chuẩn thực của axit Clohydric Tráng 2 lần Micro Biuret bằng chính dung dịch chuẩn làm việc HCl 0,02N đã chuẩn bị, sau đó nạp dung dịch vào đầy Biuret. Dùng Pipet đã kiểm định (tốt nhất là loại tự động) lấy thật chính xác 10 ml dung dịch 0,02N Bura (Na2B4O7) cho vào bình chuẩn độ (hình 3.3), cho thêm vào đó 8 giọt chỉ thị màu hỗn hợp. Thổi không khí không có CO2 vào đó trong vòng 5 phút, sau đó chuẩn độ hỗn hợp bằng dung dịch HCl từ Biuret trong khi không ngừng thổi không khí không có CO2 vào. Quá trình chuẩn độ chỉ dừng lại khi chất lỏng có màu hồng nhạt và màu không mất đi trong vòng 2-3 phút. Toàn bộ công việc trên được làm từ 2-3 lần. Nếu số đọc trên Biuret sau mỗi lần chuẩn độ không khác nhau quá 0,05 ml thì số đọc trung bình được sử dụng để tính toán kết quả. Hệ số hiệu chỉnh độ chuẩn của dung dịch axit Clohydric (KHCl) được tính theo công thức sau: KHCl = Vn.KB/(a +Δ) (3.4) Trong đó, KB là hệ số hiệu chỉnh độ chuẩn của dung dịch Bura; Vn - thể tích thực của Pipet lấy dung dịch Bura (đã có hiệu chỉnh); a - số đọc trung bình 78
  22. trên Micro Biuret và Δ -hiệu chỉnh Biuret ứng với số đọc này. Ví dụ: Thể tích của Pipet để lấy dung dịch Bura là 10ml, hiệu chỉnh Pipet là -0,04 vậy thể tích thực của nó là Vn=9,96 ml. Hệ số hiệu chỉnh độ chuẩn của dung dịch Bura là KB=1,0022, số đọc trung bình trên Biuret là 9,982 và hiệu chỉnh số đọc là +0,012. Thay các giá trị trên vào (3.4) ta có KHCl=0,9988. Độ chuẩn dung dịch chuẩn làm việc HCl theo quy ước là 0,02, vậy độ chuẩn thực của nó là NHCl= 0,02 . 0,9988 = 0,01998. Xác định độ kiềm của mẫu nước biển Mẫu nước được đem vào phòng thí nghiệm một thời gian cần thiết để nó có cùng nhiệt độ của phòng. Trước hết nạp dung dịch chuẩn HCl đã được kiểm tra vào đầy Biuret. Tiếp theo, dùng Pipet tự động đã kiểm định lấy 20 ml mẫu nước cho vào bình chuẩn độ đã rửa sạch và sấy khô (phải tráng Pipet bằng chính nước mẫu), cho thêm vào đó 8 giọt chỉ thị màu hỗn hợp và thổi không khí không có CO2 vào trong vòng 5 phút. Tiếp đó chuẩn độ mẫu nước bằng dung dịch HCl từ Biuret trong khi không ngừng thổi không khí không có CO2 vào. Lúc đầu có thể mở cả van cho dung dịch HCl chảy nhanh, sau cho chảy chậm dần và cuối cùng chảy từng giọt hoặc nửa giọt một. Việc chuẩn độ chỉ ngừng lại khi chất lỏng có màu hồng nhạt và ổn định trong vòng 3 phút. Ghi kết quả chuẩn độ vào sổ. Chú ý: khi xác lập độ chuẩn của HCl bằng ánh sáng nào thì khi xác định độ kiềm của mẫu nước cũng phải dùng ánh sáng đó. 3.2.7. Tính toán kết quả Tính trị số độ kiềm chung Trị số độ kiềm chung của nước biển (Alk) biểu diễn bằng miligam đương lượng trong 1 lít nước biển được tính theo công thức sau: 79
  23. (a + Δ1 ).N.K HCl .1000 Alk(meg / l) = (3.5) V + Δ 2 Trong đó a là số đọc trên Biuret khi chuẩn độ mẫu nước và Δ1 là hiệu chỉnh của số đọc này; N - độ chuẩn quy ước của dung dịch chuẩn làm việc HCl (0,02); KHCl -hệ số hiệu chỉnh độ chuẩn; V- thể tích mẫu nước lấy để phân tích và Δ2 là hiệu chỉnh Pipet lấy mẫu nước. Tính trị số độ kiềm Cacbonat và độ kiềm Borac Độ kiềm Cacbonat AlkC được tính gần đúng theo công thức: AlkC = Alk - AlkB (3.6) Trong đó AlkB là độ kiềm Borac. Năm 1955, Havây đã thiết lập được mối quan hệ giữa độ kiềm Borac với độ Clo (Cl%o) và hoạt độ của ion Hydrro trong nước biển, như sau: 2,2.10 −5.Cl%o Alk B = + * (3.7) 1 + a(H ) / K B Trong đó, a(H+) là hoạt độ ion Hydro, được tính thông qua trị số pH của nước biển (thực tế, khi xác định pH bằng phương pháp so màu hay đo điện, ta * chỉ xác định được nồng độ của các ion Hydro hoạt động); KB - hằng số nồng độ bậc một của axít Boric trong nước biển (về hằng số nồng độ sẽ được giải thích rõ ở mục 3.3 chương này). Ở đây chỉ tính đến hằng số nồng độ bậc một vì các hằng số phân ly bậc 2 và bậc 3 của axit Boric nhỏ không đáng kể. Trong các bảng hải dương chuyên dụng hiện nay (bảng 3.7) có đưa ra các giá trị hằng số * nồng độ KB ứng với điều kiện nhiệt-muối khác nhau. * -8 Bảng 3.7: Giá trị hằng số nồng độ bậc một (KB .10 ) của axit Boric trong nước biển (trích từ bảng Hải dương) Độ Clo %o T=5oC 10 oC 15 oC 20 oC 25 oC 30 oC 16 0.112 0.129 0.144 0.158 0.174 0.191 17 0.117 0.132 0.148 0.166 0.182 0.200 80
  24. Độ Clo %o T=5oC 10 oC 15 oC 20 oC 25 oC 30 oC 18 0.123 0.138 0.155 0.174 0.191 0.204 19 0.126 0.141 0.158 0.178 0.195 0.214 20 0.132 0.148 0.166 0.182 0.204 0.224 21 0.135 0.151 0.170 0.191 0.209 0.229 25 0.158 0.178 0.200 0.219 0.240 0.257 3.2.8. Thứ tự công việc Bước 1: Chuẩn bị mọi dụng cụ cần thiết. Bước 2: Xác lập độ chuẩn thực của dung dịch chuẩn làm việc HCl. a- Tráng Biuret bằng dung dịch chuẩn làm việc HCl đã pha chế, sau đó nạp dung dịch này vào đầy Biuret. b- Tráng Pipet bằng dung dịch chuẩn Borac 0,02N đã kiểm định và dùng nó để lấy 10 ml dung dịch này cho vào bình chuẩn độ, cho thêm vào đó 8 giọt chỉ thị màu. c- Thổi không khí không có CO2 vào bình trong 5 phút. Sau đó chuẩn độ hỗn hợp bằng dung dịch HCl trong khi không ngừng thổi không khí không có CO2 vào bình. Khi chất lỏng có màu hồng nhạt thì tạm ngừng chuẩn độ. d- Theo dõi màu của chất lỏng trong 3 phút trong khi vẫn thổi không khí không có CO2 vào đó. Nếu màu biến mất thì tiếp tục chuẩn độ thật cẩn thận cho đến khi màu ổn định (cần chú ý là từ lúc bắt đầu đến lúc thực sự kết thúc phải không ngừng thổi không khí không có CO2 vào). e- Ghi số đọc rồi làm lại lần thứ 2 để lấy số đọc trung bình, sau đó tính toán hệ số hiệu chỉnh. Bước 3: Chuẩn độ mẫu nước biển. a- Nạp dung dịch chuẩn HCl đã kiểm tra vào đầy Biuret. b- Tráng Pipet bằng nước mẫu và dùng nó lấy 20 ml mẫu cho vào bình 81
  25. chuẩn độ (bình chuẩn độ trước đó phải được rửa sạch và sấy khô), cho tiếp vào đó 8 giọt chỉ thị màu. Thổi không khí không có CO2 vào đó trong vòng 5 phút. c- Chuẩn độ hỗn hợp bằng dung dịch HCl trong khi không ngừng thổi không khí không có CO2 vào. Quá trình tiếp tục như khi xác lập độ chuẩn thực của dung dịch HCl. d- Ghi số đọc trên Biuret vào sổ. Bước 4: Việc tính toán kết quả có thể thực hiện sau ngày làm việc. Kết quả tính phải được người thứ hai kiểm tra. 3.3. TÍNH TOÁN CÁC THÀNH PHẦN HỆ CACBONAT TRONG BIỂN 3.3.1. G iới thiệu chung Các hợp phần vô cơ của Cacbon tồn tại trong nước biển dưới dạng khí - Cacbonic (CO2), axit Cacbonic (H2CO3) và các dẫn xuất phân ly của nó (HCO3 , -2 CO3 ). Các tiểu phần này liên hệ tương hỗ với nhau trong mối cân bằng động và cùng nhau tạo thành hệ cacbonat. Quan điểm hiện đại cho rằng đại dương là một hệ động lực hở phức tạp và thống nhất, trong đó bao gồm nhiều hệ thành phần mà hệ cacbonat là một trong các hệ thành phần phức tạp nhất. Nồng độ tổng cộng các hợp phần của hệ cácbonat (ký hiệu ∑C) được biểu diễn dưới dạng: - 2- ∑C = [CO2] + [H2CO3] + [HCO3 ] + [CO3 ] Đại lượng ∑C tỷ lệ với độ muối nước biển, song mối quan hệ này không chặt chẽ lắm, nhất là ở những vùng có độ muối thấp. Đối với nước đại dương có o độ muối cao và nhiệt độ 8÷12 C, khi áp suất khí CO2 hoà tan trong nước cân bằng với áp suất riêng của khí CO2 trong khí quyển và có giá trị -6 PCO2=(270÷320)10 at, thì mối quan hệ của ∑C với độ Clo nước biển (theo Buch K.) được biểu diễn gần đúng là: ∑C = 0,108 Cl%o (±1,5%) mM/l Như đã đề cập đến ở các mục 3.1 và 3.2 chương này, khí CO2 hoà tan, ion Hydro và độ kiềm là các thành phần có liên quan trực tiếp tới hệ cacbonat. Nhìn 82
  26. tổng quát hơn nữa, hệ cacbonat của biển còn có quan hệ trực tiếp và có vai trò rất quan trọng trong cả ba quá trình tương tác: thuỷ quyển-khí quyển, thuỷ quyển-thạch quyển và thuỷ quyển-sinh quyển. Bởi vậy nghiên cứu hệ cacbonat của biển rất có ý nghĩa đối với nhiều lĩnh vực khoa học như: lịch sử trái đất, lịch sử khí quyển, lịch sử sinh quyển, địa chất học, địa hoá học, khí tượng học Bức tranh tổng quát về mối cân bằng động của hệ cacbonat trong biển mô tả trên hình 3.4. CO2 (khí quyển) ⎯⎯⎯ ↓↑⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Mặt biển ⎯⎯⎯ CO2 (hoà tan) + H2O ⇔ H2CO3 ↓↑ ↓↑ - - Hô Quang OH + + HCO3 hấp hợp H+ ↓↑ -2 + CO3 Sinh vật + +2 +2 CaCO3 (hoà tan) ⇔ Ca (hoặc Mg ) ⎯⎯⎯ Đáy biển ⎯⎯ ↓↑ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ CaCO3 (rắn) Hình 3.4: Sơ đồ hệ cacbonat trong biển Trong mối cân bằng động, các tiểu phần của hệ cacbonat liên hệ tương hỗ với nhau và chuyển hoá cho nhau. Bất cứ một sự biến đổi dù nhỏ của một tiểu phần nào cũng kéo theo sự biến đổi của các tiểu phần khác và làm cho hệ chuyển sang trạng thái cân bằng mới. Sơ đồ trên còn chỉ rõ sự cân bằng giữa áp suất khí CO2 trong khí quyển và trong nước đã duy trì nồng độ tất cả các hợp phần của hệ cacbonat trong những giới hạn nhất định. Trong các giới hạn đó, đối với mỗi trường hợp cụ thể, nồng độ các tiểu phần trước hết được xác định bởi tương quan giữa quá trình sản sinh và tiêu thụ CO2. Ví dụ, giảm nồng độ CO2 xuống không nhiều lắm (thường xẩy ra trong quá trình quang hợp ở lớp nước tầng trên) thì một phần ion hydrocacbonat sẽ chuyển sang ion cacbonat và pH sẽ tăng. Ngược lại, ở các lớp nước sâu và gần đáy nồng độ CO2 có thể tăng cao do qúa trình phân huỷ chất 83
  27. hữu cơ, đã làm chuyển gần hết ion cacbonat sang hydrocacbonat và pH giảm. Như vậy, về nguyên tắc không thể xác định nồng độ các tiểu phần của hệ bằng phương pháp phân tích hoá học, bởi vì nếu tách riêng bất kỳ một tiểu phần nào ra để đo đạc sẽ làm thay đổi ngay trạng thái cân bằng của hệ. Chỉ có thể tính toán chúng thông qua một số yếu tố khác dễ xác định như độ kiềm, pH và các hằng số nhiệt động như hằng số nồng độ, hoạt độ, hệ số hoạt độ. 3.3.2. Phương pháp tính các thành phần hệ cacbonat Dựa trên nguyên tắc cân bằng hoá học và định luật tác dụng khối lượng, năm 1932 Bukhơ, Havây và các cộng tác viên đã xây dựng lý thuyết hệ cacbonat trong biển. Axít Cacbonic có hai bậc phân li: + - H2CO3 ⇐⇒ H + HCO3 - + -2 HCO3 ⇐⇒ H + CO3 Theo định luật tác dụng khối lượng, ở nhiệt độ 22oC và áp suất 760 mmHg, ta có: + - -7 [H ].[HCO3 ]/[H2CO3] = K1 = 4.10 (3.8) + -2 - -11 [H ].[CO3 ]/[HCO3 ] = K2 = 4,2.10 (3.9) Ở đây K1 và K2 là hằng số cân bằng nhiệt động của axít Cacbonit (hằng số phân ly bậc 1 và bậc 2), phụ thuộc vào nhiệt độ và áp suất, các ký hiệu móc vuông ([ ]) chỉ nồng độ các tiểu phần. Đối với nước biển, do có nhiều thành phần ion trong nó nên trong công thức (3.8), (3.9) phải thay nồng độ các tiểu phần bằng hoạt độ của nó. Do đó: + − a(H + ) f [HCO − ] a(H ).a(HCO3 ) HCO3 3 = = K1 (3.10) a(H CO ) f []H CO 2 3 H 2CO3 2 3 84
  28. + −2 a(H + ) f [CO −2 ] a(H ).a(CO3 ) CO3 3 = = K 2 (3.11) a(HCO − ) f []HCO − 3 HCO3 3 Trong đó kí hiệu a( ) chỉ hoạt độ của ion và f - hệ số hoạt độ của nó. Đối với nước biển có độ muối trung bình, lý thuyết hiện đại về dung dịch chỉ cho phép tính các hệ số hoạt độ theo lực ion. Vì vậy, ngày nay người ta không sử dụng các hằng số nhiệt động K1, K2, mà sử dụng các hằng số nồng độ K1* và K2*. Các hằng số này bất biến đối với nhiệt độ và áp suất, nhưng lại biến đổi theo độ muối. Với nước biển có độ muối trung bình, hoạt độ của axit H2CO3 không phân li được coi gần đúng bằng nồng độ của nó. Do đó từ 3.10, 3.11 ta có: + - * a(H ).[HCO3 ]/a(H2CO3) = K1.fH2CO3/fHCO3 = K1 (3.12) + -2 - * a(H ).[CO3 ]/[HCO3 ] = K2.fHCO3/fCO3 = K2 (3.13) Đưa vào các hằng số nồng độ K1* và K2* đã khắc phục được việc sử dụng các hệ số hoạt độ f, thực ra chúng đã được tính tới trong khi xác định chính các hằng số này bằng thực nghiệm (tương tự như khi xác định pH ta chỉ xác định được nồng độ của các ion Hydro hoạt động). Để việc sử dụng được thuận lợi, người ta thường biểu diễn hằng số nồng độ qua logarit âm của nó: pK1*= -lg(K1*) và pK2*= -lg(K2*) Buch K. đã thiết lập được mối liên hệ giữa pK1*, pK2* với độ Clo của nước biển tại nhiệt độ 20oC và các số hiệu chỉnh cho nó dưới ảnh hưởng của áp suất thuỷ tĩnh thông qua độ sâu H: 1/3 -4 pK1*= 6,47 - 0,188 (Cl%o) ; ΔpK1*= -0,48.10 H 1/3 -4 pK2*= 10,38 - 0,510 (Cl%o) ; ΔpK2*= -0,18.10 H Giá trị K1* và K2* đối với nước đại dương có độ Clo 15-20%o và nhiệt độ khác nhau được tính trước và cho trong các bảng hải dương chuyên dụng (bảng 3.8). 85
  29. - Như vậy trong hai phương trình 3.12 và 3.13 có chứa 3 ẩn số là [HCO3 ], -2 [CO3 ] và a(H2CO3). Để tính được chúng cần sử dụng phương trình thứ ba, đó là công thức độ kiềm Cacbonat đã được nói tới ở mục 3.2 chương này. - -2 AlkC= [HCO3 ] + 2[CO3 ] (3.14) Giải hệ 3 phương trình 3.12, 3.13 và 3.14 ta có: - + [HCO3 ] = AlkC/[1+(2K2*/aH )] (mg-ion/l) (3.15) -2 + [CO3 ] = AlkC/[2+(aH /K2*)] (mg-ion/l) (3.16) Riêng đối với a(H2CO3) được xác định như sau: Vì CO2 + H2O ⇔ H2CO3 nên a(H2CO3)=a(H2O).a(CO2). Biết rằng a(H2O)=1-0,000969Cl%o và a(CO2) = pCO2.αo, trong đó pCO2 là áp suất riêng của khí CO2 (giá trị cần tính) còn αo là độ hoà tan của CO2 trong nước cất (cho sẵn trong các bảng hải dương chuyên dụng). Thay các giá trị này vào 3.12, có - chú ý đến [HCO3 ] đã tính được theo 3.15, ta có: −1 + Alk C .10 .a(H ) pCO2 (at) = * * + (3.17) K1 .α o .a(H 2O)(1+ 2K 2 / a(H )) Bảng 3.8: Giá trị hằng số nồng độ K1* và K2* của axit Cacbonic trong nước biển (trích từ bảng Hải dương) Cl Nhiệt độ (oC) %o 10 12 14 16 18 20 22 24 26 28 30 -8 K1* (10 ) 15 0.74 0.77 0.80 0.83 0.86 0.89 0.92 0.95 0.97 0.99 1.01 16 0.75 0.78 0.81 0.84 0.87 0.91 0.93 0.96 0.99 1.01 1.03 17 0.76 0.79 0.82 0.86 0.89 0.92 0.95 0.98 1.00 1.02 1.05 18 0.77 0.81 0.84 0.87 0.90 0.93 0.97 0.99 1.02 1.04 1.06 19 0.79 0.82 0.85 0.88 0.92 0.95 0.98 1.03 1.05 1.06 1.08 20 0.80 0.83 0.87 0.90 0.93 0.97 1.00 1.04 1.06 1.07 1.10 -9 K2* (10 ) 86
  30. Cl Nhiệt độ (oC) %o 10 12 14 16 18 20 22 24 26 28 30 15 0.60 0.63 0.66 0.69 0.73 0.76 0.79 0.83 0.86 0.90 0.93 16 0.63 0.67 0.71 0.74 0.78 0.81 0.85 0.88 0.92 0.96 0.99 17 0.67 0.71 0.74 0.78 0.83 0.86 0.90 0.93 0.97 1.01 1.05 18 0.71 0.75 0.79 0.83 0.87 0.91 0.95 0.99 1.03 1.07 1.11 19 0.75 0.79 0.83 0.88 0.92 0.96 1.01 1.05 1.10 1.14 1.18 20 0.80 0.84 0.89 0.93 0.98 1.02 1.07 1.12 1.16 1.21 1.26 Có thể chuyển pCO2 với thứ nguyên atmotphe tính được từ (3.17) thành nồng độ CO2 với thứ nguyên Mol/l (phân tử gam) hay ml/l tuỳ thuộc thứ nguyên của αS, theo công thức: CO2 = pCO2. αS (3.18) Ở đây αS là độ hoà tan của khí CO2 trong nước biển ứng với áp suất riêng của nó trong khí quyển bằng 1 at. Giá trị αS cũng được tính trước và cho sẵn trong các bảng hải dương. Việc tính toán có thể đơn giản hơn nếu viết 3.17 dưới dạng pCO2 = AlkC.φ (3.19) Trong đó φ là hệ số nhân, bao gồm tất cả các đại lượng biến đổi trong 3.17, trừ AlkC. Giá trị của φ phụ thuộc vào độ Clo, nhiệt độ, pH, và chưa tính tới ảnh hưởng của áp suất thủy tĩnh, cũng được tính trước và cho trong các bảng hải dương. Dựa theo các công thức 3.15, 3.16 và 3.19 đã tính được nồng độ các hợp phần của hệ cacbonat nước biển phụ thuộc vào nhiệt độ, độ muối, độ kiềm và pH. Kết quả cho ở bảng 3.9. -4 Bảng 3.9: Nồng độ các hợp phần của hệ cacbonat nước biển khi pCO2 = 3.10 at - -2 S T Độ kiềm pH [H2CO3 + CO2] [HCO3 ] [CO3 ] o %o C Alk AlkC mg/l mM/l mg/l mM/l mg/l mM/l 35 20 2.38 2.28 8.20 0.228 0.0102 1.740 1.740 0.540 0.270 87
  31. - -2 S T Độ kiềm pH [H2CO3 + CO2] [HCO3 ] [CO3 ] o %o C Alk AlkC mg/l mM/l mg/l mM/l mg/l mM/l 35 0 2.38 2.28 8.15 0.423 0.0190 1.970 1.970 0.306 0.153 30 20 2.05 1.97 8.17 0.233 0.0104 1.585 1.585 0.380 0.190 - Từ bảng 3.9 thấy rằng trong mọi trường hợp, hợp phần HCO3 luôn luôn chiếm ưu thế và hợp phần (H2CO3+CO2) có nồng độ bé nhất. Tuy nồng độ (H2CO3+CO2) nhỏ bé nhưng nó lại là nhân tố cơ bản ảnh hưởng đến trạng thái cân bằng của hệ cacbonat trong biển. Điều này đã được thể hiện rõ trên sơ đồ hệ cacbonat hình 3.4. 88
  32. Chương 4 XÁC ĐỊNH CÁC HỢP PHẦN DINH DƯỠNG VÔ CƠ VÀ CÁC CHẤT HỮU CƠ TRONG NƯỚC BIỂN 4.1. Ý NGHĨA VÀ NGUYÊN TẮC CHUNG PHƯƠNG PHÁP SO MÀU XÁC ĐỊNH CÁC HỢP PHẦN DINH DƯỠNG VÔ CƠ TRONG NƯỚC BIỂN 4.1.1. Ý nghĩa Theo cách gọi, các chất dinh dưỡng vô cơ trong biển bao gồm rất nhiều nguyên tố cần thiết đối với đời sống sinh vật, như H, C, O, P, N, Si, S, Mg, Ca, K Tuy nhiên trong mọi trường hợp, 3 nguyên tố P, N, Si bao giờ cũng là không thể thiếu được đối với sự sống. Các hợp chất vô cơ của Phôtpho, Nitơ, Silic tồn tại trong nước biển với nồng độ rất nhỏ và rất hay biến đổi theo cả không gian và thời gian. Sự biến đổi của chúng phụ thuộc chặt chẽ vào quá trình quang hợp, bởi trong quá trình này thực vật phải sử dụng các chất dinh dưỡng vô cơ để tổng hợp nên chất hữu cơ đầu tiên trong biển. Phôtpho dinh dưỡng vô cơ tồn tại trong nước biển dưới dạng axit - -2 -3 Phôtphoric (H3PO4) cùng các dẫn xuất phân ly của nó (H2PO4 , HPO4 , PO4 ), gọi chung là các Phốtphat. Trong nước biển, axit Photphoric có thể kết hợp với một vài phân tử nước để tạo nên những phần tử phức tạp hơn, chủ yếu là dạng H3PO4.2H2O. Nồng độ tổng cộng các Phôtphat trong nước biển có thể biến đổi từ 0-100 mgP/m3. Nitơ dinh dưỡng vô cơ trong nước biển tồn tại ở các dạng liên kết khoáng. + - - Đó là Amôni (NH4 ), Nitrit (NO2 ) và Nitrat (NO3 ). Trong 3 dạng liên kết khoáng này thì Amôni là dạng đầu tiên và Nitrat là dạng cuối cùng của quá trình 89
  33. tái sinh Nitơ vô cơ trong biển. Nhu cầu Nitơ vô cơ của quá trình quang hợp - + trong biển cũng giảm dần từ NO3 đến NH4 . Nồng độ tổng cộng Nitơ vô cơ trong biển dao động trong khoảng 0-500 mgN/m3. Silic dinh dưỡng vô cơ tồn tại trong nước biển ở dạng axit Silisic (H2SiO3) - -2 và các dẫn suất phân ly của nó (HSiO3 , SiO3 ), gọi chung là các Silicat. Trong nước biển, axit Silisic có khả năng tạo thành những phần tử phức tạp hơn nhờ kết hợp với một số phân tử nước và tồn tại ở dạng mSiO2.nH2O, trong đó nhiều nhất là dạng Metasilisic (H2SiO3)n. So với các hợp phần dinh dưỡng khác, Silic vô cơ tồn tại trong nước biển với nồng độ cao hơn (bậc nồng độ có thể tới 103- 104 mgSi/m3) do độ hoà tan trong nước của nó khá cao và do nó có nguồn dự trữ dồi dào từ lục địa. Nghiên cứu các hợp chất dinh dưỡng vô cơ trong nước biển rất có ý nghĩa đối với các nghiên cứu hoá học biển, sinh học biển và môi trường. Các nghiên cứu về quá trình sản xuất sơ cấp trong biển đã chỉ ra rằng, nhu cầu sử dụng Cacbon, Silic, Nitơ và Phôtpho vô cơ trong quang hợp của thực vật nổi (Phytoplankton) có tỷ lệ (tính theo khối lượng) là C:Si:N:P = 42:28:7:1, lớn hơn nhiều so với tỷ lệ tồn tại tự nhiên của chúng trong nước biển. Chính vì vậy, 3 nguyên tố P, N, Si, nhất là P và N được coi là chỉ tiêu giới hạn quang hợp trong biển. Việc sử dụng các chất dinh dưỡng vô cơ trong quang hợp của thực vật biển để tạo nên sản phẩm sơ cấp là khâu quan trọng bậc nhất trong chu trình chuyển hoá vật chất và năng lượng trong hệ sinh thái biển. 4.1.2. Nguyên tắc chung phương pháp so màu xác định các hợp phần dinh dưỡng vô cơ trong biển Cho đến nay, phương pháp so mầu vẫn đang được sử dụng rộng rãi để xác định các hợp phần dinh dưỡng vô cơ P, N, Si trong nước biển. Phương pháp này dựa trên tính chất của một số dung dịch có khả năng tạo thành hỗn hợp nhuộm màu khi cho chúng tác dụng với những hoá chất đặc trưng. Màu của hỗn hợp có thể hiện lên rất rõ ngay cả trong trường hợp nồng độ chất tan trong dung dịch rất nhỏ. Hiển nhiên, cường độ màu của hỗn hợp tỷ lệ với nồng độ chất tan và độ dày lớp dung dịch. 90
  34. Với nguyên tắc so sánh màu của dung dịch cần xác định nồng độ với màu của cũng loại dung dịch ấy nhưng đã biết trước nồng độ, ta có thể tìm được nồng độ dung dịch cần xác định. Dung dịch đã biết trước nồng độ được gọi là dung dịch chuẩn, hay đơn giản hơn gọi là "chuẩn" . Phương pháp so màu bằng mắt Trong cách so màu bằng mắt, thủ thuật cân bằng màu là quan trọng nhất. Biết rằng, khi cường độ màu của hai dung dịch cùng loại cần so sánh đã ở trạng thái cân bằng thì nồng độ và chiều dày lớp dung dịch của chúng có quan hệ sau đây: C1/C2 = h2/h1 (4.1) Trong đó C1, C2 và h1, h2 tương ứng là nồng độ và chiều dày các dung dịch 1 và 2. Từ đó thấy rằng, khi so màu hai dung dịch cùng loại, cùng màu nhưng cường độ màu khác nhau, chỉ cần thay đổi cột chiều cao của chỉ một dung dịch bằng cách thêm vào hoặc bớt đi một lượng thích hợp, ta sẽ có trạng thái cân bằng màu. Độ chính xác của phương pháp so màu bằng mắt có liên quan với các yếu tố sau: - Trạng thái mắt của người phân tích. Điều này phụ thuộc rất nhiều vào kinh nghiệm của phân tích viên. - Ảnh hưởng của nồng độ các dung dịch: Công thức 4.1 chỉ đúng khi tỷ số h2/h1 khá gần đơn vị, nghĩa là C1 và C2 không khác nhau nhiều lắm. Nếu tỷ số trên khác xa đơn vị thì việc so màu không có ý nghĩa. Bởi vậy, cách khắc phục tốt nhất là phải có nhiều dung dịch chuẩn với nồng độ khác nhau, để có thể lựa chọn dễ dàng dung dịch chuẩn có màu gần nhất với màu dung dịch cần phân tích. Kinh nghiệm phân tích cho thấy tương quan chiều cao của các cột dung dịch ở trạng thái cân bằng mầu chỉ được phép nằm trong giới hạn 1: 0,7 (hoặc 0,6). 91
  35. - Ngoài ra, độ chính xác của phương pháp còn phụ thuộc vào độ sạch của hoá chất, độ muối trong mẫu nước phân tích, nhiệt độ và ánh sáng môi trường nơi làm việc, khoảng thời gian từ lúc thu mẫu đến lúc phân tích, khoảng thời gian phân tích Những nhân tố này đều có ảnh hưởng đến màu sắc và cường độ màu của các dung dịch chuẩn và mẫu nước. Đương nhiên có thể khắc phục được những ảnh hưởng này bằng cách làm sạch hoá chất, tăng độ muối của dung dịch chuẩn, khống chế nhiệt độ và ánh sáng nơi làm việc, không nên lưu mẫu quá lâu, các thao tác phải nhanh chóng và chính xác Sử dụng các thiết bị hiện đại trong phương pháp so màu Thay cho việc so màu bằng mắt, người ta đã chế tạo những máy và thiết bị so màu (như máy so màu quang điện, phổ quang kế ). So màu bằng các thiết bị so màu là khách quan và đạt độ chính xác cao, nhưng lại cần các máy móc tinh vi, hiện đại và đắt tiền. Do vậy cách này chỉ tiện lợi khi làm việc trên bờ, trong phòng thí nghiệm hoặc trên các tàu nghiên cứu lớn. Chi tiết về phương pháp so màu bằng máy so màu sẽ được nói tới ở mục 4.6 chương này. 4.2. XÁC ĐỊNH PHÔT PHÁT TRONG NƯỚC BIỂN 4.2.1 Phương pháp xác định Như đã nói ở mục 4.1.1, trong môi trường nước biển axit Phôtphoric và axit Silisic có thể chuyển thành những dạng phức tạp hơn nhờ kết hợp với một vài phân tử nước: H3PO4 + 2H2O = H7PO6 H2SiO3 + 3H2O = H8SiO6 Trong dung dịch loãng, những hợp chất phức tạp này nếu được tác dụng với Amoni Molipdat sẽ tạo ra các axit dị đa (gọi là Heteropolyaxit) nhuộm màu rất mạnh. Cụ thể là, Amoni Molipdat khi tác dụng với H7PO6 sẽ cho Heteropolyaxitphôtphoric {H7P(Mo2O7)6}, khi tác dụng với H8SiO6 sẽ cho Heteropolyaxitsilisic {H8Si(Mo2O7)6}. Trong các Heteropolyaxit này, gốc -2 (Mo2O7) đã thay thế hoàn toàn Ôxy ở các axit tương ứng H7PO6 và H8SiO6. 92
  36. Các Heteropoliaxyt kể trên nhuộm màu vàng rất mạnh và có thể dùng màu này làm cơ sở so màu với các dung dịch chuẩn cùng loại để xác định Phôtphát và Silicat. Nhưng vì nước biển luôn có mặt đồng thời cả hai hợp phần Phôtphat và Silicat nên nếu chỉ dùng màu vàng để so màu thì ta chỉ biết được tổng nồng độ của Phôtphát và Silicat, chứ không thể biết nồng độ riêng từng hợp phần. Để xác định riêng từng hợp phần, người ta phải sử dụng các chất khử đặc trưng. Nhờ tác dụng với chất khử đặc trưng, Molipđen có hoá trị 6 trong các Heteropolyaxit kể trên bị khử và sản phẩm nhuộm màu xanh rất mạnh (gọi là màu xanh Molipđen). Để xác định Phôtphát, chất khử đặc trưng được sử dụng là Thiếc Clorua (SnCl2) mà đặc điểm của nó là chỉ khử Molipđen trong Hetero-polyaxit có Phôtpho. Để xác định Silicat, chất khử đặc trưng được sử dụng là muối Mor (NH4)2Fe(SO4)2.6H2O. Muối Mor chỉ khử Molipđen trong Heteropolyaxit có Silic. Như vậy, mặc dù cùng sử dụng màu xanh Molipden làm cơ sở để so màu với dung dịch chuẩn, nhưng trong mỗi trường hợp sử dụng chất khử đặc trưng ta chỉ xác định được một hợp phần tương ứng. Tóm lược nguyên tắc của phương pháp này được thể hiện qua sơ đồ hình 4.1. Nước biển (có P, Si) + Molipdat Amoni ⎯→ Heteropolyaxit (màu vàng) Màu xanh Molipden + Thiếc Clorua Heteropolyaxit (xác định Phôtphat) (màu vàng) Màu xanh Molipden + Muối Mor (xác định Silicat) Hình 4.1: Sơ đồ nguyên tắc xác định Phôtphat và Silicat 4.2.2. Thiết bị và dụng cụ Nếu so màu bằng mắt, dụng cụ quan trọng nhất là cặp ống trụ Hener. Cặp ống trụ Hener gồm hai ống trụ thuỷ tinh có hình dạng và kích thước hoàn toàn như nhau, dung tích khoảng 100 ml. Phía gần đáy của mỗi ống có một van nhỏ cho dung dịch chảy qua trong trường hợp cần bớt đi một lượng dung dịch để 93
  37. thay đổi chiều cao của nó. Đáy của ống phải phẳng và nhẵn đồng thời có gắn gương phản xạ ánh sáng. Thành ngoài của các ống được khắc vạch chia độ (hoặc có gắn chung một thước đo) để xác định chiều cao cột dung dịch trong ống (hình 4.2). Kèm theo cặp ống trụ Hener là hộp so màu Hener (còn gọi là Calorimet). Hộp so màu Hener là một hộp kín, ở gần đáy có lỗ nhỏ để ánh sáng đi vào gương gắn dưới ống trụ và phản xạ lên phía trên tới mắt người phân tích. Có thể dùng gỗ hoặc bìa các tông để chế tạo hộp so màu, nhưng phải đảm bảo lượng ánh sáng đi vào hai gương phản xạ là như nhau. Sử dụng Calorimet khi làm việc với mục đích loại trừ ảnh hưởng của ánh sáng môi trường xung quanh, chỉ còn lại một dòng ánh sáng phản xạ từ gương qua lớp dung dịch trong các ống trụ tới mắt người phân tích. Ngoài cặp ống trụ Hener và Calorimet, cần thiết phải có các chai lọ, bình đong hình trụ, hình cầu, các bình đựng hoá chất, ống nghiệm, các loại Pipet, giấy lọc và các dụng cụ thông thường khác. 100 90 80 70 60 50 40 30 20 G ươ ng phẳng Hình 4.2: Cặp ống trụ Hener 94
  38. 4.2.3. Hoá chất Hỗn hợp dung dịch Amoni Molipdat trong axit Sunfuric Hoà trộn một thể tích dung dịch 10% Amoni Molipdat (a) với ba thể tích dung dịch 50% axit Sunfuric (b). Các dung dịch (a) và (b) chuẩn bị như sau: Dung dịch a: Lấy 25 gam Amoni Molipdat tinh thể hoà với nước cất để thành 250 ml. Nếu dung dịch thu được bị đục thì phải đun nóng cẩn thận nó. Trong trường hợp cần thiết phải lọc qua phễu thuỷ tinh sạch, đã được rửa bằng axit Sunfuric loãng và nước cất. Dung dịch b: Pha loãng cẩn thận 1 thể tích H2SO4 đậm đặc vào một thể tích nước cất. Chú ý chỉ được bổ sung từ từ axit vào nước mà không làm ngược lại. Các dung dịch (a) và (b) phải được bảo vệ cẩn thận trong các bình riêng biệt và chỉ hoà trộn chúng trước khi sử dụng. Sau khi hoà trộn theo tỷ lệ đã dẫn, dung dịch Amoni Molipdat trong axit Sunfuric phải được bảo quản trong bình thuỷ tinh xẫm màu và đặt ở nơi tối. Dung dịch Thiếc Clorua Lấy 25 gam bột thiếc sạch hoá học (hoặc thiếc lá) cho vào ống nghiệm có vạch mức ở 10 ml, sau đó cho thêm vào 2 ml axit Clohydric đậm đặc và thận trọng hâm nóng trên hơi nước. Sau khi thiếc đã tan hết thì nâng thể tích dung dịch lên tới vạch bằng nước cất. Ống nghiệm chứa Thiếc Clorua được đậy kín bằng nút qua đó đã cắm sẵn Pipet hoặc ống hút. Dung dịch Thiếc Clorua cần phải luôn luôn mới, không được sử dụng dung dịch đã chuẩn bị quá 24 giờ để xác định Phốtphat. Dung dịch chuẩn Kali dihydro photphat (KH2PO4) a. Dung dịch chuẩn chính KH2PO4 Dung dịch chuẩn chính được chuẩn bị từ chế phẩm tinh khiết hoá học. Dùng cân phân tích lấy chính xác 1,097 gam KH2PO4 tinh thể và chuyển lượng cân này vào bình cầu dung tích 1 lít qua phễu thuỷ tinh. Rửa chén cân và phễu 95
  39. nhiều lần bằng nước cất. Thể tích cuối cùng của dung dịch là 1 lít. Để bảo quản dung dịch cần phải cho thêm vào đó 2 ml Clorofooc (CHCl3). Bình đựng dung dịch phải thật sạch và có nút mài thật tốt. Dung dịch này có thể sử dụng trong thời gian 2-3 tháng. Dung dịch chuẩn chính được chuẩn bị như trên có nồng độ 250 mgP/l tức là 1 ml dung dịch có 0,25 mg Phôtpho nguyên chất. b. Dung dịch chuẩn làm việc KH2PO4 Dùng pipet lấy 1 ml dung dịch chuẩn chính cho vào bình cầu dung tích 100 ml và nâng thể tích tới vạch mức bằng nước cất. Một mililit dung dịch chuẩn làm việc có 0,0025 mg Phôtpho nguyên chất. Dung dịch chuẩn làm việc chỉ chuẩn bị trước lúc làm việc. Nước biển không có Phôtphát Để loại trừ ảnh hưởng của độ muối, người ta không dùng nước cất để chuẩn bị dung dịch chuẩn làm việc như vừa mô tả mà phải sử dụng nước biển không có Phôtphát. Muốn có nước biển không Phôtphat, phải chuẩn bị một hoá chất phụ sau đây: Lấy 0,3 ml dung dịch ôxyt nitrat sắt 1,0N (hoặc một ôxyt sắt khác) hoà với 0,3 ml dung dịch kiềm (KOH hoặc NaOH) 1,0N, thể tích chung được nâng lên đến 100 ml bằng nước cất. Hoá chất phụ này khi thêm vào nước biển tầng mặt một lượng không nhiều sẽ kết tủa được Phôtphat của nước biển dưới dạng Phôtphát sắt. Khi kết tủa đứng yên, gạn lầy phần trong suốt bên trên và lọc nó qua một phễu mịn đã được rửa sơ bộ bằng axit Sunfuric loãng (1:20) và nước cất. Nước biển không Phôtphat thu được bằng cách trên vẫn có thể chứa một lượng Phôtphat không nhiều, lượng này sẽ được xác định nhờ "thí nghiệm trắng" sẽ nói ở phần sau. 4.2.4. Lấy và bảo quản mẫu nước Sau khi đã tráng lọ và nút bằng chính nước biển cần lấy, mẫu nước được lấy đầy vào lọ (tối thiểu là 200 ml) và chuyển nó vào phòng thí nghiệm một thời gian thích hợp để nó có được nhiệt độ của phòng. Việc xác định Phôtphát cần được tiến hành càng sớm càng tốt nhưng không được để quá 6 giờ kể từ khi lấy mẫu. Nếu mẫu để lâu hơn nữa thì Phytoplankton trong mẫu có thể thực hiện 96
  40. quang hợp và tiêu thụ Photphat, đồng thời cũng có thể xảy ra tái sinh Phôtphat từ các chất hữu cơ trong mẫu. Nếu không thể xác định ngay trong vòng 6 giờ kể từ khi lấy mẫu thì phải bảo quản mẫu bằng Clorofooc (thêm 2 ml Clorofooc cho 1 lít mẫu) và đặt ở nơi tối, nhiệt độ thấp. Tuy nhiên việc phân tích phải càng sớm càng tốt. 4.2.5. Quá trình xác định Chuẩn bị loạt mẫu phân tích Trước hết loạt mẫu nước phân tích được rót vào các ống trụ sạch cho đến vạch 100 ml, ống trụ và nút của nó được tráng 3 lần bằng chính mẫu nước cần phân tích. Ghi số thứ tự các ống trụ tương ứng với số hiệu các mẫu. Điều chế thang chuẩn Thang chuẩn gồm các dung dịch chuẩn có nồng độ Phôtphat khác nhau và đã được biết trước. Mỗi một dung dịch chuẩn của thang được điều chế bằng cách pha loãng 100 lần một thể tích nhất định dung dịch chuẩn làm việc (có nồng độ 0,0025 mgP/l). Ví dụ, nếu lấy 0,2 ml dung dịch chuẩn làm việc để pha loãng với nước biển không Photphat thành 100 ml thì dung dịch chuẩn vừa nhận được có nồng độ 5 μgP/l (hay là 5 mgP/m3); nếu lấy 0,4 ml - ta nhận được chuẩn 10 μgP/l; lấy 0,6 ml - nhận được chuẩn 15 μgP/l; lấy 1 ml - nhận được chuẩn 25 μgP/l v.v Việc pha loãng dung dịch chuẩn làm việc để điều chế thang chuẩn được tiến hành như sau: Dùng Micro Pipet lấy thật chính xác những thể tích thích hợp dung dịch chuẩn làm việc cho vào các ống trụ có vạch mức 100 ml, sau đó bổ sung nước biển không Phôtphát cho đến vạch. Để có thể so màu nhanh chóng và chính xác, nồng độ của thang chuẩn cần phải gần với nồng độ Photphat dự kiến của mẫu phân tích. Điều này phụ thuộc rất nhiều vào kinh nghiệm của nghiên cứu viên. Thông thường, nồng độ Photphat của mẫu nước biển vùng nhiệt đới ít khi nằm ngoài giới hạn 0-60 μgP/l, vì vậy nên chuẩn bị một số dung dịch chuẩn thường gặp như 5, 10, 20, 30, 97
  41. 40, 50 và 60 μgP/l. Tạo mầu cho thang chuẩn và loạt mẫu phân tích Thêm đồng thời vào mỗi một ống trụ chứa mẫu nước phân tích và mỗi một ống trụ của thang chuẩn một lượng 2 ml dung dịch Amoni Molipdat trong Axit Sunfuric và 2 giọt Thiếc Clorua. Đậy nút các ống trụ lại và khuấy trộn chúng bằng cách đảo ngược. Khi dung dịch có Photphat, màu xanh Molipđen sẽ hiện lên, cường độ của màu tỷ lệ với nồng độ Photphát trong các dung dịch. Trong khoảng 5 phút kể từ khi khuấy trộn, màu sẽ hiện lên hoàn toàn và ổn định trong vòng 25-30 phút. Ta chỉ được phép so màu của chuẩn và mẫu trong khoảng thời gian này. Sau thời gian ổn định, màu của cả mẫu và chuẩn đều bị biến đổi. Vì vậy, số lượng mẫu trong loạt mẫu chuẩn bị cần phải thích hợp để việc so màu chúng chỉ thực hiện trong vòng 25-30 phút. Cân bằng màu của dung dịch chuẩn và mẫu Việc so màu được tiến hành trong cặp ống trụ Hener. Trước hết, rót một ít mẫu nước phân tích đã hiện mầu hoàn toàn vào một ống trụ Hener, ống trụ còn lại rót một ít dung dịch chuẩn có màu gần nhất với màu của mẫu nước phân tích. Cân bằng màu của chúng bằng cách cho chảy từ từ qua van của ống Hener dung dịch nào có màu đậm hơn (thường là mẫu nước), cho đến khi màu ở 2 ống trụ như nhau. Trong quá trình cân bằng mầu, mắt người phân tích luôn nhìn từ phía trên các ống trụ thẳng theo chiều dày các dung dịch. Kết quả chỉ được chấp nhận khi chiều cao của các chất lỏng trong hai ống trụ Hener không khác nhau nhiều lắm (không được vượt quá tỷ lệ 1: 0,6-0,7). Nếu sự khác nhau vượt quá giới hạn này thì phải thay thế dung dịch chuẩn khác có màu gần hơn nữa với màu của mẫu. Ghi kết quả so màu vào sổ chuyên môn bao gồm chiều cao và nồng độ dung dịch chuẩn, chiều cao mẫu (theo số đọc trên thang chia độ của ống Hener). Sau đó rửa sạch các ống Hener để tiếp tục so màu mẫu khác. Trong trường hợp nồng độ Phôtphat của các mẫu trong loạt mẫu đã chuẩn bị xấp xỉ nhau, tức là màu của các mẫu gần tương tự nhau thì có thể chỉ cần sử dụng một dung dịch 98
  42. chuẩn có mầu gần nhất với màu của mẫu. Khi có nhiều mẫu cần phân tích, phải chia chúng thành từng loạt riêng biệt. Số lượng mẫu của mỗi loạt phải thích hợp để việc so màu được kết thúc trong vòng 25-30 phút kể từ khi hiện màu hoàn toàn. Thêm vào đó, mỗi một loạt mẫu phải chuẩn bị một thang chuẩn mới (vì màu của thang chuẩn cũng chỉ ổn định trong vòng 25-30 phút). Việc so màu có thể thực hiện dưới ánh sáng tự nhiên, ánh sáng đèn Neon hoặc đèn cao áp thuỷ ngân. Thí nghiệm trắng Như đã nói ở trên, các hoá chất, nước cất hoặc nước biển không Phôtphat vẫn có thể chứa một lượng Phôtphat nào đấy. Để xác định lượng này cần phải thực hiện "thí nghiệm trắng". Lấy 100 ml nước cất cho vào một ống trụ, một ống trụ khác chứa dung dịch chuẩn có nồng độ yếu nhất (thường là chuẩn 0,5 μP/l hoặc nhỏ hơn). Thêm đồng thời 2 ml Amoni Molipdat trong axit Sunfuric và hai giọt Thiếc Clorua vào cả hai ống trụ kể trên. Khuấy trộn đều chúng và khi các dung dịch đã hiện màu hoàn toàn thì tiến hành so màu trong các ống trụ Hener như đã mô tả. Ghi kết quả của thí nghiệm trắng vào sổ. Với thí nghiệm trắng kể trên, có thể xác định được lượng Photphat có trong nước cất và hoá chất. Bằng cách tương tự có thể xác định được lượng Photphat có trong nước biển không Photphat. Tổng lượng Photphat tìm được trong thí nghiệm trắng không được vượt quá 2-3 μgP/l. Nếu vượt giá trị này chứng tỏ các hoá chất, nước cất, nước biển không Phốtphat là quá "bẩn", cần phải thay thế chúng bằng các loại "sạch" hơn. Chú ý: - Để tránh phải đưa thêm số hiệu chỉnh nhiệt độ, việc so màu nên tiến hành khi có sự đồng nhất nhiệt độ của mẫu và dung dịch chuẩn. - Ở những vùng gần bờ và cửa sông, nước biển thường bị đục hoặc bị nhuộm màu vàng do có các hạt phù sa. Trước khi phân tích cần phải lấy ra các chất vẩn trong nó bằng cách lọc mẫu qua phễu lọc có giấy lọc dầy. Phễu được 99
  43. rửa sơ bộ bằng axit Sunfuric loãng (1:20) và sau đó tráng lại bằng nước cất. Nếu sau khi lọc, mẫu vẫn còn màu vàng, chứng tỏ vẫn còn các hạt keo trong đó, người ta phải kết tủa chúng lại bằng cách thêm 1ml H2SO4 8% và 1 ml BaCl2 10% cho mỗi một 200 ml mẫu nước nghiên cứu. Mẫu này được để bất động qua 2 giờ, sau đó lọc lại nó và tiến hành phân tích như đã mô tả. 4.2.6. Tính toán kết quả Xác định số hiệu chỉnh "độ bẩn" Căn cứ vào số liệu của thí nghiệm trắng thực hiện đối với nước cất, số hiệu chỉnh "độ bẩn" của hoá chất và nước cất được tính theo công thức: Y = a.h1/h2 (4.2) Trong đó Y là nồng độ Photphat trong hoá chất và nước cất, h1 - chiều cao cột chất lỏng trong ống Hener chứa dung dịch chuẩn có nồng độ yếu nhất và a là nồng độ của nó, h2 - chiều cao cột nước cất có hoá chất trong ống trụ Hener. Căn cứ vào số liệu của thí nghiệm trắng thực hiện đối với nước biển không Photphat, số hiệu chỉnh "độ bẩn" của nước biển không Phôtphat là: X = a'.h'1/h'2 (4.3) Trong đó X là nồng độ Photphat trong nước biển không Photphat, h1' - chiều cao cột chất lỏng trong ống trụ Hener chứa dung dịch chuẩn có nồng độ yếu nhất và a' là nồng độ của nó, h2'- chiều cao cột nước biển không Photphat có hoá chất trong ống trụ Hener còn lại. "Độ bẩn" tổng cộng được tính theo công thức: Z = X + Y () Tính toán nồng độ Phốtphat của mẫu nước phân tích Nồng độ Photphat của mẫu phân tích có kể đến các số hiệu chỉnh được tính theo công thức sau: P (μgP/l) + Y = (C + Z).h/H (4.5) 100
  44. Trong đó P là nồng độ Photphat của mẫu nước (μgP/l), C - nồng độ dung dịch chuẩn được chọn ra để so màu, h - chiều cao của dung dịch chuẩn, H - chiều cao của mẫu nước, Z và Y đã biết. Trong công thức và 4.5, số hiệu chỉnh "độ bẩn" của hoá chất và nước cất Y chỉ có ý nghĩa nếu có sự chênh lệch về chiều cao các cột chất lỏng khi so màu mẫu nước phân tích với dung dịch chuẩn, nghĩa là h phải khác H ít nhiều. Thực chất là trong mẫu nước phân tích và trong dung dịch chuẩn đều có một lượng hoá chất như nhau, do đó nếu có sự trùng hợp màu sắc khi chiều cao 2 cột chất lỏng bằng nhau (h=H) thì ảnh hưởng của "độ bẩn" Y bị loại trừ. Trong trường hợp này giá trị của Y ở công thức và 4.5 "được xem" là bằng 0 mặc dù theo thí nghiệm trắng nó vẫn có một giá trị xác định nào đấy. Nếu các dung dịch chuẩn làm việc và các dung dịch của thang chuẩn được chuẩn bị chỉ bằng nước cất (không có nước biển không Photphat) thì trong công thức và 4.5 không có mặt giá trị X. Nhưng trường hợp này phải đưa thêm vào công thức 4.5 số hiệu chỉnh theo độ muối của mẫu nước. Số hiệu chỉnh này (ký hiệu là k) đã được tính sẵn theo các giá trị độ muối khác nhau và cho thành bảng (bảng 4.1). Khi đó, kết quả được tính theo công thức sau: P (μgP/l) = k[(C + Y).h/H - Y] (4.6) Bảng 4.1: Hệ số hiệu chỉnh theo độ muối khi xác định nồng độ Phôtphat trong nước biển bằng phương pháp so màu S%o k S%o k S%o k S%o k S%o k 0 1.00 8 1.18 16 1.25 24 1.31 32 1.34 1 1.04 9 1.19 17 1.26 25 1.31 33 1.34 2 1.05 10 1.20 18 1.26 26 1.32 34 1.35 3 1.09 11 1.22 19 1.27 27 1.32 35 1.35 4 1.11 12 1.23 20 1.28 28 1.32 36 1.35 5 1.12 13 1.23 21 1.29 29 1.32 37 1.36 6 1.14 14 1.24 22 1.29 30 1.33 38 1.36 7 1.16 15 1.25 23 1.30 31 1.33 39 1.37 101
  45. 4.2.7. Thứ tự công việc Bước 1: Khi thuận tiện, chuẩn bị sẵn dung dịch chuẩn chính KH2PO4, dung dịch H2SO4 50% và Amoni Molipdat 10%. Các chai lọ, dụng cụ cần được tẩy rửa sạch và sấy khô trước khi sử dụng. Bước 2: Chuẩn bị dung dịch Amoni Molipdat trong axit Sunfuric và dung dịch Thiếc Clorua như đã mô tả. Bước 3: Chuẩn bị dung dịch chuẩn làm việc KH2PO4 có nồng độ 0,0025 mgP/l. Bước 4: Làm các thí nghiệm trắng và tính toán kiểm tra ngay độ bẩn của hoá chất, nước cất Nếu không đạt yêu cầu (giá trị độ bẩn tổng cộng lớn hơn 3μgP/l) thì phải thay hoá chất, nước cất khác. Bước 5: Chuẩn bị loạt mẫu phân tích (số lượng vừa phải đủ phân tích trong vòng 25-30 phút). Bước 6:. Lấy 100 ml mỗi mẫu nước nghiên cứu ở loạt mẫu đã chuẩn bị cho vào các ống trụ đến vạch mức 100, ghi lại số hiệu mẫu và số hiệu ống trụ. Bước 7: Điều chế thang chuẩn gồm 4 hoặc 5 dung dịch chuẩn có nồng độ khác nhau nhưng gần với nồng độ Phôtphat dự kiến của loạt mẫu nước. Bước 8: Thêm đồng thời vào mỗi một mẫu và mỗi một chuẩn một lượng 2 ml Amoni Molipdat trong axit Sunfuric và 2 giọt Thiếc Clorua, đậy nút và khuấy trộn chúng bằng cách đảo lắc. Sau 5 phút màu của cả mẫu và chuẩn hiện lên hoàn toàn thì tiến hành so màu. Bước 9: So màu lần lượt từng mẫu với những chuẩn có màu gần nhất. Việc so màu được thực hiện ở cặp ống trụ Hener bằng cách cân bằng màu. Ghi lại các kết quả so màu. Bước 10: Công việc được lặp lại từ bước 5 đến bước 9 cho loạt mẫu khác; được lặp lại từ bước 2 cho ngày làm việc khác. Bước 11: Tính toán kết quả có thể thực hiện sau khi phân tích xong số mẫu 102
  46. hoặc sau ngày làm việc. Kết quả tính phải được người thứ hai kiểm tra. 4.3. XÁC ĐỊNH SILICAT TRONG NƯỚC BIỂN 4.3.1. Phương pháp xác định Ở mục 4.2.1 “phương pháp xác định Photphat” đã nói rõ về nguyên tắc xác định Silicat, ở đây chỉ nhắc lại những nét cơ bản nhất. Trong nước biển, axit Silisic có thể kết hợp với một số phân tử nước để tạo thành hợp chất phức tạp hơn (H8SiO6). Khi cho hợp chất phức tạp này tác dụng với Amoni Molipdat sẽ tạo ra Heteropoliaxitsilisic H8Si(Mo2O7)6 nhuộm màu vàng. Dùng chất khử đặc trưng là muối Mor, Molipden của Hetero-poliaxit này sẽ bị khử và sản phẩm có màu xanh Molipden. 4.3.2. Dụng cụ và hoá chất Những thiết bị và dụng cụ để phân tích nước biển xác định Silicat được chuẩn bị như khi xác định Phôtphat. Chỉ khác là các bình chứa dung dịch chuẩn chính và chuẩn làm việc cùng một số bình chứa khác phải tráng Parafin ở bên trong trể tránh sự hoà tan thuỷ tinh. Các hoá chất bao gồm: Dung dịch Amoni Molipdat 10% và axit Sunfuric 50% Hai dung dịch này được chuẩn bị như khi xác định Photphat. Chỉ khác là chúng không được hoà trộn với nhau để thành hỗn hợp Amoni Molipdat trong axit Sunfuric mà luôn được bảo quản riêng. Nước biển không có Silic Lấy nước biển khơi tầng mặt và lọc nó qua một phễu sứ lớn, trong phễu sứ có đặt tờ giấy lọc đã được rải một lớp Nhôm ôxyt nung đỏ. Khi nước biển đi qua lớp Nhôm ôxyt này, Silic của nó bị giữ lại. Nước biển không có Silic được chứa trong bình đã tráng Parafin hoặc chứa trong bi đông nhôm. Có thể dùng nước cất để thay cho nước biển không có Silic, nhưng khi tính 103
  47. toán phải có thêm số hiệu chỉnh theo độ muối. Dung dịch muối Mor (NH4)2Fe(SO4)2.6H2O Lấy 100 gam muối Mor khô và đun nóng vừa với 400 ml nước biển không Silic. Sau đó thêm vào 7 ml H2SO4 50%. Nếu hỗn hợp xuất hiện kết tủa hoặc vẩn đục (đó là Sắt ôxyt) thì phải để nó lắng đọng và gạn lấy phần trong suốt. Phần trong suốt được bổ sung thêm 450 ml H2SO4 đậm đặc, tinh khiết. Sau khi dung dịch đã nguội, thể tích chung được nâng lên thành 2 lít bằng nước biển không Silic. Có thể chuẩn bị dung dịch này trong bình chứa thường nhưng sau đó phải bảo quản nó ở bình đã tráng Parafin Dung dịch chuẩn chính Natri Silicat Na2SiO3 (có thể thay bằng Na2SiF6) Lấy 1,0696 gam Thạch anh (SiO2) tán nhỏ với 6 gam Xôđa (Na2CO3) khô trong chén bạch kim. Đun nóng thận trọng hỗn hợp ở nhiệt độ cao cho đến khi thành chất lỏng đồng nhất (khi đun CO2 bay lên). Sau khi nguội, chuyển hỗn hợp vào bình 1 lít và rửa chén bạch kim nhiều lần bằng nước biển không Silic. Thể tích cuối cùng của dung dịch là 1 lít. Bảo quản dung dịch này trong bình đã tráng Parafin. Dung dịch được chuẩn bị như trên có nồng độ 500 mgSi/l. Dung dịch chuẩn làm việc Lấy 10 ml chuẩn chính hoà với 90 ml nước biển không Silic. Dung dịch này có nồng độ 50 mgSi/l. Dung dịch chuẩn làm việc chỉ chuẩn bị trước lúc làm việc và bảo quản nó trong bình tráng Parafin. 4.3.3. Lấy và bảo quản mẫu nước Nên sử dụng những lọ đựng mẫu có màu xanh lá cây (vì thuỷ tinh màu khó hoà tan hơn). Trước khi lấy mẫu, cần phải tráng lọ vài lần bằng chính nước cần lấy. Mẫu phải được phân tích càng sớm càng tốt nhưng không được để quá 12 giờ kể từ khi lấy mẫu. Muốn để mẫu lâu hơn phải đưa dung dịch H2SO4 50% vào mẫu với tỷ lệ 4 giọt cho 100 ml mẫu và bảo quản nó ở nơi tối, nhiệt độ thấp. 104
  48. 4.3.4. Quá trình xác định Vì Silic vô cơ thường tồn tại trong nước biển với nồng độ lớn, có thể tới hàng nghìn μgSi/l, nên có hai cách so màu áp dụng cho hai trường hợp khác nhau: trường hợp thứ nhất khi nồng độ Silic của nước biển lớn hơn 500 μgSi/l và trường hợp thứ hai - nhỏ hơn. Việc nhận biết định tính giá trị này và lựa chọn cách so màu thích hợp phụ thuộc rất nhiều vào kinh nghiệm của người nghiên cứu. Trường hợp thứ nhất: Khi nồng độ Silic của mẫu lớn hơn 500 μgSi/l - Chuẩn bị loạt mẫu: Lấy 100 ml mỗi mẫu nước cho vào các ống trụ có vạch mức 100 (ống trụ phải được tráng bằng nước mẫu), ghi lại số hiệu ống trụ tương ứng với số hiệu mẫu. - Điều chế thang chuẩn: Thang chuẩn trong trường hợp này phải có nồng độ lớn hơn 500 μgSi/l và gần với nồng độ dự kiến của mẫu. Nếu lấy 1 ml dung dịch chuẩn làm việc (nồng độ 50 mgSi/l) để hoà với nước biển không silic thành 100 ml thì nồng độ của chuẩn này là 500 μgSi/l. Cần chuẩn bị thang chuẩn có từ 4-5 dung dịch chuẩn với nồng độ khác nhau nhưng gần với nồng độ Silic dự kiến của mẫu. - Tạo màu cho chuẩn và mẫu: Sau khi đã có thang chuẩn, cho thêm đồng thời vào loạt ống trụ chứa mẫu đã chuẩn bị và các ống trụ có dung dịch chuẩn 4 giọt H2SO4 50% (nếu khi lấy mẫu nước đã thêm H2SO4 để bảo quản mẫu rồi thì lúc này không phải cho thêm axit vào mẫu nữa). Tiếp theo cho thêm vào tất cả các ống trụ 2 ml Amoni Molipdat 10% và đậy nút các ống trụ lại, khuấy đều bằng cách đảo lắc. - So màu của mẫu với chuẩn: Sau 20 phút khuấy đảo các dung dịch, màu vàng của chuẩn và mẫu hiện rõ thì tiến hành so màu ở các ống trụ Hener, giống như đã mô tả khi xác định Phôtphat. Kết quả so màu được ghi vào sổ. Tiếp tục so màu mẫu khác cho hết số mẫu có trong loạt mẫu đã chuẩn bị. Sau khi phân tích hết loạt mẫu, tiếp tục chuẩn bị loạt mẫu mới và thang 105
  49. chuẩn mới để phân tích với quy trình hoàn toàn tương tự. Ở đây đã sử dụng màu vàng làm cơ sở để so màu. Thực tế màu vàng này là màu của cả hai loại Heteropoliaxit có chứa Silic và Phôtpho (xem phần phương pháp xác định Phôtphat, mục 4.2.1). Do đó kết quả nhận được sau khi tính toán phải được trừ đi giá trị nồng độ Phôtphat của mẫu nước. Tuy nhiên trong một số trường hợp khi nồng độ Silic lớn hơn nồng độ Phôtphat nhiều lần thì có thể bỏ qua phép trừ này mà vẫn không ảnh hưởng đến kết quả phân tích. Ở một số vùng biển, nhất là các vùng biển ven bờ, cửa sông nồng độ Silic vô cơ có thể đạt trên một vài nghìn μgSi/l trong khi đó nồng độ Phôtphat rất nhỏ, có khi chỉ đạt 2-3 μgP/l. Trường hợp thứ hai: Khi nồng độ Silic của mẫu nhỏ hơn 500 μgSi/l. Ở trường hợp này, màu vàng rất yếu do nồng độ Silic nhỏ nên không thể sử dụng màu này làm cơ sở để so màu. Đương nhiên ở đây phải điều chế thang chuẩn có nồng độ nhỏ. Ví dụ nếu lấy 0,5 ml dung dịch chuẩn làm việc để pha thành 100 ml thì chuẩn này có nồng độ 250 μgSi/l. Cần chuẩn bị thang chuẩn có từ 4-5 dung dịch chuẩn nồng độ khác nhau nhưng gần với nồng độ Silic dự kiến của mẫu. Sau khi đã chuẩn bị loạt mẫu và thang chuẩn, thêm các hoá chất vào cả mẫu và chuẩn giống như ở cách thứ nhất. Sau 3-5 phút cho thêm 5 ml dung dịch muối Mor vào tất cả chuẩn và mẫu, đậy nút các ống trụ lại và khuấy đều bằng cách đảo lắc. Năm phút sau màu xanh Molipden hiện lên và ổn định trong vòng 30 phút. Việc so màu cho hết loạt mẫu cũng được thực hiện trong khoảng thời gian này, giống như khi xác định Phôtphat. Trong trường hợp này (dùng muối Mor), kết quả nhận được sau khi tính toán chính là nồng độ thực của Silic trong mẫu nước. Sau khi đã phân tích hết loạt mẫu đã chuẩn bị, tiếp tục chuẩn bị loạt mẫu mới và thang chuẩn mới để phân tích. Với mục đích xác định Silicat, không cần thực hiện các thí nghiệm trắng bởi vì nồng độ Silic có trong hoá chất, nước cất, nước biển không Silic nhỏ bé không đáng kể so với nồng độ của nó trong nước 106
  50. biển. Tuy nhiên, nếu muốn đạt được độ chính xác cao hơn thì phải làm thí nghiệm trắng. 4.3.5. Tính toán kết quả Nồng độ Silicat xác định bằng phương pháp so màu bằng mắt được tính theo công thức sau: Si (μgSi/l) = C.h/H (4.7) Trong đó C và h là nồng độ và chiều cao cột dung dịch chuẩn trong ống trụ Hener, H - chiều cao cột nước phân tích trong ống trụ Hener còn lại. Khi tính toán kết quả cần chú ý những điểm sau đây: 1. Nếu sử dụng cách thứ nhất để phân tích (dùng màu vàng để so sánh) thì kết quả nhận được từ công thức trên phải trừ đi giá trị nồng độ Phôtphat của mẫu nước. Chỉ bỏ qua phép trừ trong một số trường hợp khi nồng độ Photphat không đáng kể so với nồng độ Silicat. 2. Khi cần đạt độ chính xác cao tức là phải thực hiện các thí nghiệm trắng, công thức tính toán cần phải có thêm các số hiệu chỉnh cho "độ bẩn" của hoá chất, nước cất và nước biển không Silic. Dạng công thức tính toán và ý nghĩa các số hiệu chỉnh tương tự như khi tính toán xác định Phôtphat. 3. Nếu sử dụng nước cất (chứ không phải nước biển không Silic) để pha chế các dung dịch thì trong kết quả tính toán phải có hiệu chỉnh theo độ muối của mẫu nước. Số hiệu chỉnh này đã được tính sẵn theo các giá trị độ muối khác nhau và cho thành bảng có in trong các tài liệu chuyên môn. 4.4. XÁC ĐỊNH NITRIT TRONG NƯỚC BIỂN 4.4.1. Phương pháp xác định - Phương pháp xác định Nitrit (NO2 ) trong nước biển dựa trên tính chất của axit Sunfonic {(NH2)C6H4(SO2OH)} có thể khử được Nitrit của nước biển để tạo thành hợp chất có tên Fenildinitro-Sunfoniaxit. Phản ứng được mô tả như sau: 107
  51. SO2(OH) SO2(OH) C6H4 + HNO2 ⎯⎯→ C6H4 + H2O NH2 N = NOH (Axit Sunfonic) (Fenidinitro-Sunfoniaxit) Nếu cho Fenidinitro-Sunfoniaxit tác dụng với α - Naphtylamin (C10H7NH2) thì hợp chất tạo ra sau đó sẽ nhuộm màu đỏ. Cường độ màu tỷ lệ với nồng độ Nitrit của dung dịch. Phản ứng được mô tả như sau: SO2(OH) SO2(OH) C6H4 + C10H7NH2 ⎯⎯→ C6H4 + H2O N = NOH N = N - C10H6NH2 (Sunfoniaxit) (α) (màu đỏ) Phương pháp xác định Nitrit theo nguyên tắc trên được Gris đưa ra năm 1879 và được Iloxvai cải tiến thêm năm 1889, nên còn gọi là phương pháp Gris- Iloxvai. Cho đến nay phương pháp này vẫn đang được ứng dụng trong nghiên cứu hoá học biển ở nhiều nước trên thế giới. - + Như đã biết, NO2 là sản phẩm trung gian của quá trình đạm hoá từ NH4 - đến NO3 và do vậy nó rất bất ổn định, có khi vắng mặt hoàn toàn trong nước biển. Vì vậy, trước khi xác định Nitrit cần phải làm phép thử định tính để kiểm tra sự có mặt của nó (phép thử định tính sẽ được trình bày ở mục .4). 4.4.2. Dụng cụ và hoá chất Tất cả các dụng cụ, thiết bị để xác định Nitrit đều được chuẩn bị giống như khi xác định Phôtphat. Các hoá chất bao gồm: Axit Axetic CH3COOH đậm đặc (dấm đặc) Axit Axetic 12%: Lấy 25ml Axít Axetic đậm đặc để hoà với nước cất thành 200ml. Axit Sunforic (NH2)C6H4(SO2OH) 108
  52. Lấy 1 gam axit Sunfonic sạch hoá học hoà với axit Axetic 12% cho đủ 300 ml. Có thể chuẩn bị hoá chất này bằng cách sau: lấy 1 gam axit Sunfonic sạch hoà với 15 ml axít Axetic đặc và 15 ml nước cất, đun nóng hỗn hợp trong khi không ngừng khuấy trộn. Sau đó nâng thể tích lên 300 ml bằng nước cất. α- Naphtylamin C10H7NH2 Lấy 0,4 gam α sạch (có màu phớt hồng) hoà với vài giọt axit Axetic đặc rồi trộn với 300 ml Axit axetic 12%. Dung dịch thu được phải trong suốt, nếu có màu tối (có tạp chất) thì cần phải điều chế lại nó bằng cách lấy 0,4 gam α hoà với 20-30 ml nước cất, đun nóng hỗn hợp cho đến sôi. Sau khi nguội, tạp chất sẽ nổi lên trên mặt dung dịch dưới dạng kết tụ màu tím xẫm. Lọc lấy phần trong suốt và hoà nó với 300 ml axit Axetic 12%. Hỗn hợp Gris Hoà trộn dung dịch axit Sunfonic và α - Naphtylamin đã chuẩn bị như trên theo tỷ lệ 1:1. Hỗn hợp Gris nhận được phải không màu. Chú ý là cả hai hoá chất axit Sunfonic và α - Naphtylamin được chuẩn bị riêng và bảo quản trong bóng tối. Chỉ trước khi sử dụng mới hoà trộn chúng với nhau để tạo thành hỗn hợp Gris. Dung dịch chuẩn chính Natri Nitrit (hoặc Kali Nitrit) o Lấy 4,9270 gam NaNO2 khô sạch (đã được sấy ở nhiệt độ 105-110 C cho đến trọng lượng không đổi) hoà với nước cất để thành 1 lít. Sau đó cho thêm 2 giọt Clorofooc để bảo vệ nó. Dung dịch này tương đối ổn định và có thể giữ nó được 2-3 tháng. Đối với KNO2 thì lượng cần lấy là 6,0770 gam. Nồng độ Nitrit (biểu diễn qua nguyên tố Nitơ) của dung dịch này là 1 gN/l. Dung dịch chuẩn trung gian Pha loãng 100 lần dung dịch chuẩn chính bằng cách lấy 1 ml chuẩn chính hoà với nước cất để thành 100 ml. Nồng độ dung dịch chuẩn trung gian là 0,01 gN/l hay 1 ml dung dịch có 0,01 mg Nitơ. Dung dịch này có thể giữ được trong 7 ngày. 109
  53. Dung dịch chuẩn làm việc Pha loãng 10 lần dung dịch chuẩn trung gian bằng cách lấy 10 ml chuẩn trung gian hoà với 90 ml nước cất. Như vậy, 1 mililit dung dịch chuẩn làm việc có 0,001 miligam Nitơ, hay nồng độ của nó là 1000 μgN/l. Dung dịch chuẩn làm việc chỉ được chuẩn bị trong ngày làm việc Nước biển không có Nitrit - Nước biển khơi tầng mặt thường không có NO2 nên có thể sử dụng ngay nó. Có thể dùng phép thử định tính để kiểm tra lại (sẽ nói ở phần sau). 4.4.3. Lấy và bảo quản mẫu nước Mẫu nước có thể được lấy trực tiếp từ máy lấy nước vào các ống trụ dung tích 100 ml cho tới vạch mức nếu việc phân tích được tiến hành ngay không để lâu quá 3-4 giờ sau khi lấy mẫu. Nếu không phân tích ngay được thì mẫu nước phải lấy vào lọ có nút thật kín, cho vào mẫu 3-4 giọt Clorofooc và bảo quản nó ở nơi tối, nhiệt độ thấp. 4.4.4. Quá trình xác định Bắt đầu ngày làm việc cần chuẩn bị dung dịch chuẩn làm việc và hoá chất Gris như đã mô tả. Thí nghiệm định tính Lấy 10 ml mẫu nước hoà với 1 ml Gris và hâm nóng hỗn hợp ở 70-80oC. Sau 10 phút đem so màu với chính mẫu nước vừa lấy (nhìn bằng mắt). Nếu có Nitrit thì ở mẫu nước có Gris sẽ xuất hiện màu hồng. Cường độ màu hồng phản ánh tương đối hàm lượng Nitrit của mẫu nước. Phân tích định lượng - Chuẩn bị loạt mẫu: Lấy 100 ml mỗi mẫu nước cho vào các ống trụ có vạch mức 100. Ghi số hiệu ống trụ tương ứng với số hiệu mẫu. - Điều chế thang chuẩn: Dùng Micro Pipet lấy lần lượt 0,2; 0,4; 0,6; 0,8 và 110
  54. 1 ml dung dịch chuẩn làm việc để hoà với nước biển không có Nitrit thành 100 ml. Các dung dịch của thang chuẩn sẽ có nồng độ tương ứng là 2, 4, 6, 8, 10 μgN/l. Ta có thể điều chế các dung dịch chuẩn có nồng độ khác với các giá trị trên, sao cho nó gần với nồng độ Nitrit dự kiến trong mẫu nước. - Tạo màu cho chuẩn và mẫu: Sau khi mẫu nước và thang chuẩn có cùng nhiệt độ thì cho thêm vào mỗi một mẫu và mỗi một chuẩn 5 ml Gris, đậy nút các ống trụ, khuấy đều dung dịch bằng cách đảo lắc và để bất động chúng trong vòng 1 giờ. Sau thời gian này màu hồng sẽ hiện lên hoàn toàn và ta có thể tiến hành so màu giữa chuẩn và mẫu trên ống trụ Hener như khi xác định Phôtphat và Silicat. Ghi kết quả so màu vào sổ. Khi đã phân tích hết số mẫu của loạt mẫu, tiếp tục chuẩn bị loạt mẫu mới và thang chuẩn mới. Số lượng mẫu của mỗi loạt cần phải thích hợp để chỉ được phép so màu trong thời gian màu ổn định. 4.4.5. Tính toán kết quả Nếu nước biển tầng mặt (hoặc nước cất) dùng để chuẩn bị dung dịch chuẩn và thang chuẩn thực sự không có Nitrit thì kết quả phân tích được tính theo công thức: NO2 (μgN/l) = C.h/H (4.8) Trong đó NO2 là nồng độ Nitrit của mẫu nước biểu diễn qua Nitơ nguyên chất và H là chiều cao của nó trong ống trụ Hener; C, h là các gía trị tương tự của dung dịch chuẩn trong ống trụ còn lại. Nếu nước biển tầng mặt (hoặc nước cất) có Nitrit (có thể kiểm tra qua phép thử định tính) thì phải thực hiện thí nghiệm trắng nhằm xác định "độ bẩn" của nó. Trong trường hợp này, các công thức xác định "độ bẩn" và xác định nồng độ Nitrit của mẫu nước có dạng tương tự như khi xác định Photphat. Nếu sử dụng nước cất để chuẩn bị dung dịch chuẩn thì kết quả tính toán phải có hiệu chỉnh theo độ muối. Số hiệu chỉnh này đã được tính sẵn và cho trong các bảng hải dương. 111
  55. 4.5. XÁC ĐỊNH NITRAT TRONG NƯỚC BIỂN 4.5.1. Phương pháp xác định - Phương pháp thông dụng để xác định Nitrat (NO3 ) trong nước biển là phương pháp Diphenilamin. Khi cho Diphelinamin {(C6H5)2NH} tác dụng với nước biển trong môi trường axit Sunfuric (H2SO4), nó sẽ bị Nirat có trong nước biển ôxi hoá và sản phẩm tạo ra là muối Hynoit-Ymol (một dẫn xuất của Hynoit Dipheni-benzidin) có màu tím xanh. Cường độ của màu tỷ lệ với nồng độ Nitrat trong nước. Quá trình oxi hoá Diphenilamin trong môi trường axit được mô tả như sau: HC CH H HC CH mất 2H+ 2 HC C N C CH ⎯⎯⎯⎯→ HC = CH HC = CH Môi trường H2SO4 (Diphelinamin (C6H5)2NH) HC - CH HC =CH H HC=CH HC CH HC C - N = C C C C = N - C CH HC=CH HC =CH H HC=CH HC=CH (Diphenibenzidin - không màu) mất tiếp 2H+ ⎯⎯⎯⎯→ Môi trường H2SO4 HC - CH HC =CH HC=CH H HC CH HC C - N = C C = C C = N - C CH HC=CH HC =CH HC=CH O HC=CH O = S =O Hynoit-Ymol - tím xanh OH 112
  56. Nhiều công trình nghiên cứu bản chất các phản ứng ôxi hoá-khử cho rằng, sự ôxi hoá bởi chất ôxi hoá là Nitrat chỉ xảy ra khi môi trường có đủ lượng Clo. Bởi vậy rất có thể sự ôxi hoá Diphenilamin như đã mô tả không phải do chính Nitrat và axit Nitric (HNO3) mà do Clo tự do và axit Nitrit (HNO2) được tạo ra trong các phản ứng trung gian sau đây: HNO3 + 3HCl → NOCl + 2H2O + Cl2 NOCl + H2O → HCl + HNO2 Độ bền của màu tím xanh phụ thuộc vào tỷ số giữa Diphenilamin và Nitrat và phụ thuộc vào nồng độ axit Sunfuric có mặt trong phản ứng. Bởi vậy, tốt nhất là nên chọn dung dịch Diphenilamin và axit Sunfuric có nồng độ cao trong khi hàm lượng Nitrat của nước biển rất khác nhau. Thực nghiệm chứng tỏ rằng khi tỷ số đương lượng Nitrat trên đương lượng Diphenilamin càng gần đơn vị thì màu càng xanh; nếu Nitrat càng nhiều so với Diphenilamin thì màu càng tím xanh hơn. Tốc độ phá huỷ màu ngoài sự phụ thuộc vào lượng thừa Diphenilamin còn phụ thuộc vào nồng độ axit Sunfuric có trong hỗn hợp. Nếu nồng độ H2SO4 càng cao thì màu càng bền vững. Ở nhiệt độ càng cao, sự hiện màu càng sớm. Ví dụ ở 20oC màu tím xanh cực đại hiện ra sau 5-6 giờ, sau đó màu cứ xanh dần đi, ở 0oC màu đạt cực đại không sớm hơn sau hơn 20 giờ. Các chất ôxi hoá khác như Nitrit, Clorat, Bromat, Iodat, các Peoxyt và muối sắt đều có thể oxi hoá được Diphenilamin và cho màu xanh. Nhưng ở trong nước biển, chỉ Nitrit là có hàm lượng đáng kể hơn so với các chất nêu trên. Bởi vậy, phương pháp Diphenilamin cho ta khả năng xác định tổng nồng độ Nitrat và Nitrit của nước biển. Tuy nhiên, tốc độ ôxi hoá Diphenilamin bằng Nitrit lớn gấp nhiều lần so với ôxi hoá bằng Nirat. Cụ thể nếu ôxi hoá bằng Nitrit thì màu cực đại xuất hiện sau khoảng 15 phút, trong khi đó nếu ôxi hóa bằng Nitrat thì màu phát triển trong vòng vài giờ. Vì thế không nên tiến hành so màu quá sớm khi màu tím xanh do ôxi hoá bằng Nitrat chưa ổn định. Nếu so màu quá sớm thì có thể chỉ xác định được Nitrit là chính. 113
  57. Ngoài phương pháp Diphenilamin xác định trực tiếp Nitrat như nêu trên, hiện nay phương pháp gián tiếp cũng đang được sử dụng rộng rãi trong hoá học biển. Nguyên tắc của phương pháp gián tiếp là khử toàn bộ Nitrát có trong mẫu nước cho đến Nitrít bằng cột Cadimi mạ đồng (phương pháp này ở đây không trình bày), sau đó xác định hàm lượng Nitrít của mẫu (phương pháp xác định Nitrit đã được trình bày ở mục 4.4). Như vậy, hàm lượng Nitrít (biểu diễn qua lượng Nitơ nguyên chất) trong trường hợp này chính là tổng hàm lượng Nitrat và Nitrít. Lấy tổng này trừ đi hàm lượng Nitrít thực của mẫu ta có hàm lượng Nitrat cần tìm. 4.5.2. Thiết bị và dụng cụ Cần phải lựa chọn cẩn thận bộ ống nghiệm bằng thuỷ tinh không màu, đường kính như nhau, có nút thuỷ tinh mài. Những ống nghiệm này dùng để chuẩn bị thang chuẩn và đựng mẫu nước phân tích (khoảng 20-30 chiếc). Ngoài ra cần phải có các loại Pipet, các bình đong, bình nhỏ giọt và các dụng cụ thông thường khác. Các loại Pipet và bình đong phải có kiểm định. Với trường hợp xác định trực tiếp Nitrat bằng phương pháp Diphenilamin, việc so mầu được tiến hành theo cách nội suy bằng mắt tương tự xác định pH nên không cần sử dụng cặp ống trụ Hener. 4.5.3. Hoá chất Dung dịch Diphenilamin trong axit Sunfuric Lấy 1 gam Diphenilamin hoà với 100 ml H2SO4 đậm đặc (tỷ trọng 1,84). Sau đó lấy 100 ml nước cất cho vào bình đong có vạch ở 1 lít, cho tiếp vào đó 5 ml dung dịch Diphenilamin vừa chuẩn bị và rót thật cẩn thận axit Sunfuric đậm đặc vào đến vạch mức. Xáo trộn chúng bằng que khuấy thuỷ tinh. Sau khi dung dịch nguội, bổ sung tiếp axit cho đến vạch và lại xáo trộn chúng. Dung dịch Diphenilamin rất bền vững và có thể để lâu. Nếu dung dịch đã chuẩn bị có màu xanh nhạt đủ nhận biết thì chứng tỏ trong nó không có chất khử, nếu nó không màu (có chất khử) thì phải cải tạo lại nó. 114
  58. Trước khi cải tạo phải kiểm tra định tính xem có thực sự cần cải tạo hay không? Phép kiểm tra định tính dựa vào màu của thang chuẩn mà ta chuẩn bị được với sự tham gia của Diphenilamin "bẩn" (cách điều chế thang chuẩn sẽ được nói ở phần sau). Nếu trong vòng 2-3 giờ, mọi dung dịch của thang chuẩn đều hiện màu thì Diphenilamin vẫn sử dụng được để xác định Nitrat. Nếu một hoặc một số nào đấy dung dịch của thang chuẩn ở phần nồng độ nhỏ không hiện màu thì phải thực sự cải tạo lại Diphenilamin. Để cải tạo lại dung dịch, phải dùng dung dịch KNO3 mới điều chế (0,7 gam KNO3 trong 1 lít nước cất). Thêm hoá chất này cho mỗi một 1 lít Diphenilamin một lượng đúng bằng lượng dung dịch chuẩn làm việc (cũng là KNO3) có ở cái chuẩn đầu tiên hiện màu của thang chuẩn (tính từ đầu yếu của thang). Ví dụ, ta đã điều chế được thang chuẩn là 0,5, 1,0, 1,5, 2,0 v.v , chuẩn đầu tiên hiện màu tính từ đầu yếu của thang là chuẩn trong đó có 1,5 ml dung dịch chuẩn làm việc, thì phải thêm 1,5 ml KNO3 mới điều chế cho mỗi một lít dung dịch Diphenilamin cần cải tạo. Dung dịch chuẩn chính Kali Nitrat (KNO3) Lấy 0,3610 gam KNO3 sạch, hoà tan trong 500 ml nước cất. Để bảo quản, phải thêm vào dung dịch 15-20 giọt Thuỷ ngân Clorua bão hoà (có thể thay bằng Clorofooc), nhưng sao cho thể tích của nó vẫn là 500 ml. Dung dịch chuẩn chính nhận được bằng cách pha chế như trên có nồng độ 100 mgN/l và có thể giữ được trong thời gian dài. Dung dịch chuẩn làm việc Lấy 1 ml chuẩn chính pha với nước cất thành 100 ml. Dung dịch này có nồng độ 1 mgN/l. Chỉ điều chế dung dịch chuẩn làm việc trong ngày làm việc. Dung dịch Natri Clorua 20% Lấy 20 gam NaCl sạch đã được kết tinh hoà với 80 ml nước cất. Dung dịch này nhằm để tạo ra cái "nền" Clo trong thang chuẩn (sẽ nói rõ ở mục điều chế thang chuẩn). 115
  59. Dung dịch bão hoà Thuỷ ngân Clorua (HgCl2) Lấy 2,5 gam HgCl2 hoà với 100 ml nước cất. Khi dung dịch bão hoà thì HgCl2 còn lại sẽ lắng xuống đáy bình. Dung dịch này là chất độc mạnh đòi hỏi phải thật cẩn thận khi sử dụng, vận chuyển và bảo quản, bình chứa dung dịch phải có dán nhãn ghi chữ “Độc”. Đây là dung dịch dùng để bảo quản các dung dịch chuẩn và mẫu nước, tuy nhiên có thể thay thế nó bằng Clorofooc nếu không có HgCl2. Điều chế thang chuẩn Thang chuẩn được điều chế từ dung dịch chuẩn làm việc có nồng độ 1 mgN/l. Đong chính xác bằng Pipét cho vào các bình có vạch mức 100ml những lượng dung dịch chuẩn làm việc như sau: 0.5; 1.0; 1.5; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0 và 10 ml. Pipet phải được tráng bằng dung dịch chuẩn làm việc trước khi lấy nó. Sau đó cho tiếp vào các bình này một lượng dung dịch NaCl 20% thích hợp, lượng này phải tương ứng với độ muối của mẫu nước nghiên cứu. Ví dụ khi độ muối của mẫu nước là 10-12%o thì phải thêm 5 ml NaCl 20%, nếu độ muối là 32- 35 %o thì phải thêm 16 ml Trong trường hợp loạt mẫu nước lấy lên có độ muối gần nhau thì tất cả các chuẩn của thang đều được thêm cùng một lượng NaCl 20% tương ứng với độ muối của mẫu. Nếu mẫu nước lấy từ biển lên được phân tích ngay, nghĩa là mẫu không cần phải bảo quản thì các chuẩn lúc này cũng không cần phải thêm các hoá chất bảo quản, mà bổ sung ngay nước cất cho đến vạch mức 100. Trường hợp mẫu nước không được phân tích ngay (do các điều kiện khách quan) thì mẫu phải được bảo quản bằng Clorua thuỷ ngân hoặc Clorofooc (xem mục 4.5.4), lúc này bắt buộc các chuẩn cũng phải được bảo quản bằng chính các hoá chất đã bảo quản mẫu nước. Cụ thể là, nhỏ vào mỗi một bình của thang chuẩn 3-4 giọt dung dịch HgCl2 bão hoà (hoặc Clorofooc) sau đó bổ sung nước cất vào cho đến vạch mức 100. Trong cả hai trường hợp, sau khi bổ sung nước cất cần khuấy trộn đều dung dịch cẩn thận bằng cách đảo lắc. Thang chuẩn được chuẩn bị như trên sẽ có nồng độ tương ứng là 5, 10, 15, 116
  60. 20, 30, 40, 50, 60, 70, 80, 100 μgN/l. Khi phải chuẩn bị thang chuẩn có nồng độ cao từ 500 μg N/l trở lên thì có thể điều chế nó trực tiếp từ dung dịch chuẩn chính. Thang chuẩn chỉ chuẩn bị trong ngày làm việc, không sử dụng nó ở ngày hôm sau. 4.5.4. Lấy và bảo quản mẫu nước Lấy mẫu để xác định Nitrát tương tự như lấy mẫu để xác định Phôtphat và Silic. Mẫu được phân tích càng sớm càng tốt. Nếu không phân tích được ngay trong vòng 6 giờ kể từ khi lấy mẫu thì phải bảo quản mẫu bằng cách thêm 3-4 giọt Clorua thuỷ ngân bão hoà (hoặc Clorofooc) cho 100 ml mẫu. 4.5.5. Quá trình xác định Bắt đầu một ngày làm việc, ta chuẩn bị dung dịch chuẩn làm việc và thang chuẩn như đã mô tả. Tiếp đó chuẩn bị loạt mẫu nước phân tích với số lượng thích hợp. Tạo mầu cho chuẩn và mẫu Đong thật chính xác 2 ml mỗi một chuẩn của thang chuẩn (kể từ nồng độ nhỏ đến lớn) và cho lần lượt vào các ống nghiệm sạch khô. Pipet phải được tráng 2 lần bằng chính chuẩn cần lấy. Sau đó đong 2 ml mỗi mẫu nước cần phân tích cho lần lượt vào các ống nghiệm sạch và khô khác (Pipet cũng phải được tráng bằng chính mẫu nước cần lấy). Tất cả các ống nghiệm phải hoàn toàn như nhau và để tránh nhầm lẫn, chúng phải được đánh số tương ứng với các chuẩn và số hiệu các mẫu. Thật cẩn thận, thêm tiếp 5 ml Diphenilamin vào tất cả các ống nghiệm có dung dịch chuẩn và mẫu nước. Khuấy trộn hỗn hợp trong các ống nghiệm bằng que thuỷ tinh lần lượt từ nồng độ nhỏ đến lớn. Trước đó que khuấy phải luôn luôn được giữ trong ống nghiệm có đầy axit Sunfuric 3:2 (60 ml H2SO4 đậm đặc hoà với 40 ml H2O). Nên chuẩn bị cả chuẩn số "0" vào một ống nghiệm mà ở đó chỉ có 2 ml nước cất và 5 ml Diphenilamin. Chuẩn số "0" dùng để xác lập hiệu chỉnh "độ bẩn" của hoá chất Diphenilamin. 117
  61. Sau đó một thời gian (vài tiếng), màu tím xanh Hynoit- Ymol trong các ống nghiệm sẽ hiện lên. Cũng tại thời điểm này có thể biết được có cần phải cải tạo lại Diphenilamin hay không? Nếu phải cải tạo lại hoá chất thì toàn bộ công việc tạo mầu cho chuẩn và mẫu phải làm lại từ đầu với sự tham gia của dung dịch Diphenilamin mới. Cường độ màu đủ để so màu ở 18-20oC được phát triển trong 2-3 giờ và ổn định trong khoảng 2 giờ tiếp theo. Các dung dịch có nồng độ Nitrat lớn thì màu phát triển nhanh hơn và có thể so màu chúng sau 2 giờ kể từ khi tạo màu. Những dung dịch có nồng độ Nitrat nhỏ thì phải sau 3 giờ mới nên so màu. Không nên so màu sau 4 giờ và lâu hơn, vì lúc này màu bị phá huỷ dần. Với thời gian hiện màu như trên đủ để nhiệt độ của mẫu và chuẩn như nhau. So màu của mẫu với chuẩn Việc so màu được tiến hành qua phép nội suy bằng mắt hoặc nhờ các thiết bị so màu như máy so màu quang điện, phổ quang kế Khi so màu bằng mắt, ống nghiệm có nước nghiên cứu được đặt giữa hai ống nghiệm chuẩn có màu gần nhất (giống như khi xác định pH). Đáp số được giải quyết bằng phép nội suy. Ghi kết quả nội suy vào sổ chuyên môn. 4.5.6. Tính toán kết quả Kết quả so mầu bằng phép nội suy như đã mô tả (hoặc so màu trên các thiết bị so màu) được chấp nhận làm kết quả phân tích Nitrát của mẫu nước. Tuy nhiên cần chú ý là phương pháp Diphenilamin cho khả năng xác định tổng nồng độ Nitrat và Nitrit nếu tiến hành so màu quá sớm. Vì vậy, kết quả cuối cùng nhận được có thể phải hiệu chỉnh theo sự có mặt của Nitrit trong mẫu. 4.5.7. Chú ý Toàn bộ công việc xác định Nitrat phải tuân theo đúng quy trình đã chỉ dẫn, việc đong đo phải thật chính xác, dụng cụ và hoá chất phải thật sạch sẽ. Các ống nghiệm để chứa dung dịch của thang chuẩn và mẫu nước cần được rửa cận thận bằng axit Sunfuric đặc (ngâm trong axit từ 5-6 ngày), sau đó sấy khô. Nếu 118