Bài giảng Phương pháp lập trình - Bài 8: Đệ quy - Ngô Hữu Dũng
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Phương pháp lập trình - Bài 8: Đệ quy - Ngô Hữu Dũng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_phuong_phap_lap_trinh_bai_8_de_quy_ngo_huu_dung.pdf
Nội dung text: Bài giảng Phương pháp lập trình - Bài 8: Đệ quy - Ngô Hữu Dũng
- TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THÀNH PHỐ HỒ CHÍ MINH Phương pháp lập trình Đệ quy TS. Ngô Hữu Dũng
- Bài toán Cho S(n) = 1 + 2 + 3 + + n =>S(10)? S(11)? S(10) = 1 + 2 + + 10 = 55 S(11) = 1 + 2 + + 10 + 11 = 66 = S(10) + 11 = 55 + 11 = 66 Phương pháp lập trình - Đệ quy
- 2 bước giải bài toán Bước 2. Thế ngược . Xác định kết quả bài toán đồng dạng từ đơn giản đến S(n) = S(n-1) + n phức tạp Kết quả cuối cùng. S(n-1) = S(n-2) + n-1 = + Bước 1. Phân tích S(1) = S(0) + 1 . Phân tích thành bài toán đồng dạng nhưng đơn giản hơn. . Dừng lại ở bài toán đồng S(0) = 0 dạng đơn giản nhất có thể xác định ngay kết quả. Phương pháp lập trình - Đệ quy
- Khái niệm đệ quy Khái niệm Vấn đề đệ quy là vấn đề được định nghĩa bằng chính nó. Ví dụ Tổng S(n) được tính thông qua tổng S(n-1). 2 điều kiện quan trọng Tồn tại bước đệ quy. Điều kiện dừng. Phương pháp lập trình - Đệ quy
- Hàm đệ quy trong NNLT C Khái niệm Một hàm được gọi là đệ quy nếu bên trong thân của hàm đó có lời gọi hàm lại chính nó một cách trực tiếp hay gián tiếp. Hàm( ) Hàm1( ) Hàm2( ) { { { Lời gọi Hàm Lời gọi Hàm2 Lời gọi Hàmx } } } ĐQ trực tiếp ĐQ gián tiếp Phương pháp lập trình - Đệ quy
- Cấu trúc hàm đệ quy (TS) { Phần dừng if ( )(Base step) { • Phần khởi tính toán hoặc điểm kết thúc của thuật toán • Không chứa phần đang được định return nghĩa; } Phần đệ quy (Recursion step) Lời gọi Hàm• Có sử dụng thuật toán đang được định nghĩa. } Phương pháp lập trình - Đệ quy
- Phân loại Trong thân hàm có duy nhất một TUYẾN TÍNH 1 lời gọi hàm gọi lại chính nó một cách tường minh. Trong thân hàm có hai lời gọi NHỊ PHÂN 2 hàm gọi lại chính nó một cách tường minh. HỖ TƯƠNG Trong thân hàm này có lời gọi hàm tới PHI TUYẾN 3 hàm kia và bên trong thân hàm kia có lời gọi hàm tới hàm này. 4 Trong thân hàm có lời gọi hàm lại chính nó được đặt bên trong thân vòng lặp. Phương pháp lập trình - Đệ quy
- Đệ quy tuyến tính Ví dụ Tính S(n) = 1 + 2 + + n S(n) = S(n – 1) + n ĐK dừng: S(0) = 0 .: Chương trình :. Cấu trúc chương trình long Tong(int n) { TênHàm( ) { if (n == 0) if ( ) { return 0; return Tong(n–1) + n; return ; } } TênHàm( ); } Phương pháp lập trình - Đệ quy
- Đệ quy nhị phân Ví dụ Tính số hạng thứ n của dãy Fibonacy: f(0) = f(1) = 1 f(n) = f(n – 1) + f(n – 2) n > 1 Cấu trúc chương trình ĐK dừng: f(0) = 1 và f(1) = 1 TênHàm( ) { .: Chương trình :. if ( ) { long Fibo(int n) { return ; if (n == 0 || n == 1) } return 1; TênHàm( ); return Fibo(n–1)+Fibo(n–2); } TênHàm( ); } Phương pháp lập trình - Đệ quy
- Đệ quy hỗ tương Ví dụ Tính số hạng thứ n của dãy: x(0) = 1, y(0) = 0 x(n) = x(n – 1) + y(n – 1) y(n) = 3*x(n – 1) + 2*y(n – 1) Cấu trúc chương trình ĐK dừng: x(0) = 1, y(0) = 0 .: Chương trình :. TênHàm1( ) { long yn(int n); if ( ) long xn(int n) { return ; if (n == 0) return 1; TênHàm2( ); return xn(n-1)+yn(n-1); } } TênHàm2( ) { long yn(int n) { if ( ) if (n == 0) return 0; return ; return 3*xn(n-1)+2*yn(n-1); TênHàm1( ); } } Phương pháp lập trình - Đệ quy
- Đệ quy phi tuyến Ví dụ Tính số hạng thứ n của dãy: x(0) = 1 x(n) = n2x(0) + (n-1)2x(1) + + 22x(n – 2) + 12x(n – 1) Cấu trúc chương trình ĐK dừng: x(0) = 1 TênHàm( ) { .: Chương trình :. if ( ) { long xn(int n) { return ; if (n == 0) return 1; } long s = 0; Vòng lặp { for (int i=1; i ); s = s + i*i*xn(n–i); } return s; } } Phương pháp lập trình - Đệ quy
- Các bước xây dựng hàm đệ quy . Tổng quát hóa bài toán cụ thể thành bài toán tổng quát. Thông số hóa . Thông số hóa cho bài toán tổng quát bài toán . VD: n trong hàm tính tổng S(n), . Chia bài toán tổng quát ra thành: . Phần không đệ quy. Tìm thuật giải . Phần như bài toán trên nhưng tổng quát kích thước nhỏ hơn. . VD: S(n) = S(n – 1) + n, . Các trường hợp suy biến của bài toán. Tìm các trường . Kích thước bài toán trong trường hợp này là nhỏ nhất. hợp suy biến (neo) . VD: S(0) = 0 Phương pháp lập trình - Đệ quy
- Cơ chế gọi hàm và STACK main() B() main { { ; ; A(); D(); ; ; D(); } A D ; } C() A() { ; C { } B ; B(); D() D ; B B B C C(); { STACK ; ; D A A A A A A A D } } M M M M M M M M M M M Thời gian Phương pháp lập trình - Đệ quy
- Nhận xét Cơ chế gọi hàm dùng STACK trong C phù hợp cho giải thuật đệ quy vì: Lưu thông tin trạng thái còn dở dang mỗi khi gọi đệ quy. Thực hiện xong một lần gọi cần khôi phục thông tin trạng thái trước khi gọi. Lệnh gọi cuối cùng sẽ hoàn tất đầu tiên. Phương pháp lập trình - Đệ quy
- Ví dụ gọi hàm đệ quy Tính số hạng thứ 4 của dãy Fibonacy F(4)5 F(3)3 5+ F(2)2 2 3 1 F(2) + F(1) F(1)1 2+ F(0)1 F(1)1 2+ F(0)1 Phương pháp lập trình - Đệ quy
- Một số lỗi thường gặp Công thức đệ quy chưa đúng, không tìm được bài toán đồng dạng đơn giản hơn (không hội tụ) nên không giải quyết được vấn đề. Không xác định các trường hợp suy biến – neo (điều kiện dừng). Thông điệp thường gặp là StackOverflow do: Thuật giải đệ quy đúng nhưng số lần gọi đệ quy quá lớn làm tràn STACK. Thuật giải đệ quy sai do không hội tụ hoặc không có điều kiện dừng. Phương pháp lập trình - Đệ quy
- Các vấn đề đệ quy thông dụng Đệ quy?? Phương pháp lập trình - Đệ quy
- 1.Hệ thức truy hồi Khái niệm Hệ thức truy hồi của 1 dãy An là công thức biểu diễn phần tử An thông qua 1 hoặc nhiều số hạng trước của dãy. A0 A1 An-2 An-1 Hàm truyAn hồi A0 A1 An-2 An-1 Hàm truyAn hồi Phương pháp lập trình - Đệ quy
- 1.Hệ thức truy hồi Ví dụ 1 Vi trùng cứ 1 giờ lại nhân đôi. Vậy sau 5 giờ sẽ có mấy con vi trùng nếu ban đầu có 2 con? Giải pháp Gọi Vh là số vi trùng tại thời điểm h. Ta có: Vh = 2Vh-1 V0 = 2 Đệ quy tuyến tính với V(h)=2*V(h-1) và điều kiện dừng V(0) = 2 Phương pháp lập trình - Đệ quy
- 1.Hệ thức truy hồi Ví dụ 2 Gửi ngân hàng 1000 USD, lãi suất 12%/năm. Số tiền có được sau 30 năm là bao nhiêu? Giải pháp Gọi Tn là số tiền có được sau n năm. Ta có: Tn = Tn-1 + 0.12Tn-1 = 1.12Tn-1 V(0) = 1000 Đệ quy tuyến tính với T(n)=1.12*T(n-1) và điều kiện dừng V(0) = 1000 Phương pháp lập trình - Đệ quy
- 2.Chia để trị (divide & conquer) Khái niệm Chia bài toán thành nhiều bài toán con. Giải quyết từng bài toán con. Tổng hợp kết quả từng bài toán con để ra lời giải. Phương pháp lập trình - Đệ quy
- 2.Chia để trị (divide & conquer) Ví dụ 1 Cho dãy A đã sắp xếp thứ tự tăng. Tìm vị trí phần tử x trong dãy (nếu có) Giải pháp mid = (l + r) / 2; Nếu A[mid] = x trả về mid. Ngược lại Nếu x < A[mid] tìm trong đoạn [l, mid – 1] Ngược lại tìm trong đoạn [mid + 1, r] Sử dụng đệ quy nhị phân. Phương pháp lập trình - Đệ quy
- 2.Chia để trị (divide & conquer) Ví dụ 2 Tính tích 2 chuỗi số cực lớn X và Y Giải pháp X = X2n-1 XnXn-1 X0, Y = Y2n-1 YnYn-1 Y0 n Đặt XL=X2n-1 Xn, XN=Xn-1 X0 X=10 XL+XN n Đặt YL=Y2n-1 Yn, YN=Yn-1 Y0 Y=10 YL+YN 2n n X*Y = 10 XLYL + 10 (XLYL+XNYN)+XNYN và XLYL+XNYN = (XL-XN)(YN-YL)+XLYL+XNYN Nhân 3 số nhỏ hơn (độ dài ½) đến khi có thể nhân được ngay. Phương pháp lập trình - Đệ quy
- 2.Chia để trị (divide & conquer) Một số bài toán khác Bài toán tháp Hà Nội Các giải thuật sắp xếp: QuickSort, MergeSort Các giải thuật tìm kiếm trên cây nhị phân tìm kiếm, cây nhị phân nhiều nhánh tìm kiếm. Lưu ý Khi bài toán lớn được chia thành các bài toán nhỏ hơn mà những bài toán nhỏ hơn này không đơn giản nhiều so với bài toán gốc thì không nên dùng kỹ thuật chia để trị. Phương pháp lập trình - Đệ quy
- 3.Lần ngược (Backtracking) Khái niệm Tại bước có nhiều lựa chọn, ta chọn thử 1 bước để đi tiếp. Nếu không thành công thì “lần ngược” chọn bước khác. Nếu đã thành công thì ghi nhận lời giải này đồng thời “lần ngược” để truy tìm lời giải mới. Thích hợp giải các bài toán kinh điển như bài toán 8 hậu và bài toán mã đi tuần. Phương pháp lập trình - Đệ quy
- 3.Lần ngược (Backtracking) Ví dụ Tìm đường đi từ X đến Y. A D B Y X C Phương pháp lập trình - Đệ quy
- Một số bài toán kinh điển THÁP HÀ NỘI TÁM HẬU # $ @ 1 2 3 1 3 2 MÃ ĐI TUẦN PHÁT SINH HOÁN VỊ Phương pháp lập trình - Đệ quy
- Tháp Hà Nội Mô tả bài toán Có 3 cột A, B và C và cột A hiện có N đĩa. Tìm cách chuyển N đĩa từ cột A sang cột C sao cho: Một lần chuyển 1 đĩa Đĩa lớn hơn phải nằm dưới. Có thể sử dụng các cột A, B, C làm cột trung gian. Phương pháp lập trình - Đệ quy
- Tháp Hà Nội N đĩa A C = N?-1 đĩa A B + Đĩa N A C + N-1 đĩa B C 1 N-1 N Cột nguồn A Cột trung gian B Cột đích C Phương pháp lập trình - Đệ quy
- Tám hậu Mô tả bài toán Cho bàn cờ vua kích thước 8x8 Hãy đặt 8 hoàng hậu lên bàn cờ này sao cho không có hoàng hậu nào “ăn” nhau: Không nằm trên cùng dòng, cùng cột Không nằm trên cùng đường chéo xuôi, ngược. Phương pháp lập trình - Đệ quy
- Tám hậu – Các dòng 0 1 n đường 2 3 4 5 6 7 Phương pháp lập trình - Đệ quy
- Tám hậu – Các cột 0 1 2 3 4 5 6 7 n đường Phương pháp lập trình - Đệ quy
- Tám hậu – Các đường chéo xuôi 2n-1 đường 0 1 2 3 4 5 6 14 13 Phương12 11 pháp lập10 trình9 - Đệ quy8 7
- Tám hậu – Các đường chéo ngược 2n-1 đường 0 1 2 3 4 5 6 7 8 9 10 11 Phương12 pháp13 lập14 trình - Đệ quy
- Tám hậu – Các dòng i = 2 j = 3 j+i=5 Phương pháp lập trình - Đệ quy j-i+n-1=8
- Mã đi tuần Mô tả bài toán Cho bàn cờ vua kích thước 8x8 (64 ô) Hãy đi con mã 64 nước sao cho mỗi ô chỉ đi qua 1 lần (xuất phát từ ô bất kỳ) theo luật: 5 6 4 7 3 8 2 1 Phương pháp lập trình - Đệ quy
- Phân tích giải thuật đệ quy Sử dụng cây đệ quy (recursive tree) Giúp hình dung bước phân tích và thế ngược. Bước phân tích: đi từ trên xuống dưới. Bước thế ngược đi từ trái sang phải, từ dưới lên trên. Ý nghĩa Chiều cao của cây Độ lớn trong STACK. Số nút Số lời gọi hàm. Phương pháp lập trình - Đệ quy
- Nhận xét Ưu điểm Sáng sủa, dễ hiểu, nêu rõ bản chất vấn đề. Tiết kiệm thời gian thực hiện mã nguồn. Một số bài toán rất khó giải nếu không dùng đệ qui. Khuyết điểm Tốn nhiều bộ nhớ, thời gian thực thi lâu. Một số tính toán có thể bị lặp lại nhiều lần. Một số bài toán không có lời giải đệ quy. Phương pháp lập trình - Đệ quy
- Ví dụ cây đệ quy Fibonacy F(4) F(3) F(2) F(2) F(1) F(1) F(0) F(1) F(0) Lặp lại Phương pháp lập trình - Đệ quy
- Khử đệ quy (Tham khảo) Khái niệm Đưa các bài toán đệ quy về các bài toán không sử dụng đệ quy. Thường sử dụng vòng lặp hoặc STACK tự tạo. Phương pháp lập trình - Đệ quy
- Tổng kết Nhận xét Chỉ nên dùng phương pháp đệ quy để giải các bài toán kinh điển như giải các vấn đề “chia để trị”, “lần ngược”. Vấn đề đệ quy không nhất thiết phải giải bằng phương pháp đệ quy, có thể sử dụng phương pháp khác thay thế (khử đệ quy) Tiện cho người lập trình nhưng không tối ưu khi chạy trên máy. Bước đầu nên giải bằng đệ quy nhưng từng bước khử đệ quy để nâng cao hiệu quả. Phương pháp lập trình - Đệ quy
- Bài tập thực hành Bài 1: Các bài tập trên mảng sử dụng đệ quy. Bài 2: Viết hàm xác định chiều dài chuỗi. Bài 3: Hiển thị n dòng của tam giác Pascal. a[i][0] = a[i][i] = 1 a[i][k] = a[i-1][k-1] + a[i-1][k] Bài 4: Viết hàm đệ quy tính C(n, k) biết C(n, k) = 1 nếu k = 0 hoặc k = n C(n, k) = 0 nếu k > n C(n ,k) = C(n-1, k) + C(n-1, k-1) nếu 0<k<n Phương pháp lập trình - Đệ quy
- Bài tập thực hành Bài 5: Đổi 1 số thập phân sang cơ số khác. Bài 6: Bài toán 8 hậu Bài 7: Bài toán mã đi tuần Bài 8: Tính các tổng truy hồi. Phương pháp lập trình - Đệ quy