Bài giải Xác suất thống kê - Trần Ngọc Hội

pdf 13 trang ngocly 3070
Bạn đang xem tài liệu "Bài giải Xác suất thống kê - Trần Ngọc Hội", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giai_xac_suat_thong_ke_tran_ngoc_hoi.pdf

Nội dung text: Bài giải Xác suất thống kê - Trần Ngọc Hội

  1. P(A A A )=== P(A )P(A )P(A ) 0,7.0,2.0,5 0,07; BAØI GIAÛI 123 1 2 3 P(A A A )=== P(A )P(A )P(A ) 0,3.0,8.0,5 0,12; XAÙC SUAÁT THOÁNG KEÂ 123 1 2 3 P(A A A )=== P(A )P(A )P(A ) 0,3.0,2.0,5 0,03. (GV: Traàn Ngoïc Hoäi – 2009) 123 133 2 Suy ra P(A) = 0,22. b) Goïi B laø bieán coá coù 2 khaåu truùng. Ta coù CHÖÔNG 1 B=++ AAA123 AAA 123 AAA 123 NHÖÕNG ÑÒNH LYÙ CÔ BAÛN TRONG Tính toaùn töông töï caâu a) ta ñöôïc P(B) = 0,47. c) Goïi C laø bieán coá coù 3 khaåu truùng. Ta coù LYÙ THUYEÁT XAÙC SUAÁT C= AAA.123 Tính toaùn töông töï caâu a) ta ñöôïc P(C) = 0,28. d) Goïi D laø bieán coá coù ít nhaát 1 khaåu truùng. Ta coù Baøi 1.1: Coù ba khaåu suùng I, II vaø III baén ñoäc laäp vaøo moät muïc tieâu. Moãi DABC.= ++ khaåu baén 1 vieân. Xaùc suaát baén truùng muïc tieâu cuaû ba khaåu I, II vaø III laàn Chuù yù raèng do A, B, C xung khaéc töøng ñoâi, neân theo coâng thöùc Coäng xaùc löôït laø 0,7; 0,8 vaø 0,5. Tính xaùc suaát ñeå suaát ta coù: a) coù 1 khaåu baén truùng. P(D) = P(A) + P(B) + P(C) = 0,22 + 0,47 + 0,28 = 0,97. b) coù 2 khaåu baén truùng. e) Gæa söû coù 2 khaåu truùng. Khi ñoù bieán coá B ñaõ xaûy ra. Do ñoù xaùc suaát c) coù 3 khaåu baén truùng. ñeå khaåu thöù 2 truùng trong tröôøng hôïp naøy chính laø xaùc suaát coù ñieàu kieän d) ít nhaát 1 khaåu baén truùng. P(A /B). e) khaåu thöù 2 baén truùng bieát raèng coù 2 khaåu truùng. 2 Theo coâng thöùc Nhaân xaùc suaát ta coù: P(A B) = P(B)P(A /B) Lôøi giaûi 2 2 Suy ra Toùm taét: P(A B) Khaåu suùng I IIù III P(A /B) = 2 . 2 P(B) Xaùc suaát truùng 0,7 0,8 0,5 Maø A 2123123BAAAAAA=+ neân lyù luaän töông töï nhö treân ta ñöôïc Goïi Aj (j = 1, 2, 3) laø bieán coá khaåu thöù j baén truùng. Khi ñoù A1, A2, A3 ñoäc laäp vaø giaû thieát cho ta: P(A2B)=0,4 Suy ra P(A2/B) =0,851. P(A11 )== 0, 7; P(A ) 0, 3; P(A )== 0, 8; P(A ) 0, 2; 22 Baøi 1.2: Coù hai hoäp I vaø II moãi hoäp chöùa 10 bi, trong ñoù hoäp I goàm 9 bi P(A33 )== 0, 5; P(A ) 0, 5. ñoû, 1 bi traéng; hoäp II goàm 6 bi ñoû, 4 bi traéng. Laáy ngaãu nhieân töø moãi hoäp a) Goïi A laø bieán coá coù 1 khaåu truùng. Ta coù 2 bi. a) Tính xaùc suaát ñeå ñöôïc 4 bi ñoû. A =++AAA123 AAA 123 AAA 123 b) Tính xaùc suaát ñeå ñöôïc 2 bi ñoû vaø 2 bi traéng. Vì caùc bieán coá A123AA,AAA,AAA 123 123 xung khaéc töøng ñoâi, neân c) Tính xaùc suaát ñeå ñöôïc 3 bi ñoû vaø 1 bi traéng. theo coâng thöùc Coäng xaùc suaát ta coù d) Giaû söû ñaõ laáy ñöôïc 3 bi ñoû vaø 1 bi traéng. Haõy tìm xaùc suaát ñeå bi traéng P(A)=++ P(A A A A A A A A A ) 123 123 123 coù ñöôïc cuûa hoäp I. =++P(A123 A A ) P(A 123 A A ) P(A 123 A A ) Vì caùc bieán coá A1, A2, A3 ñoäc laäp neân theo coâng thöùc Nhaân xaùc suaát ta coù 1 2 Printed with FinePrint trial version - purchase at www.fineprint.com
  2. Lôøi giaûi B = A0B2 + A1B1 + A2B0 Do tính xung khaéc töøng ñoâi cuûa caùc bieán coá A0B2 , A1B1 , A2B0, coâng Goïi Ai , Bi (i = 0, 1, 2) laàn löôït laø caùc bieán coá coù i bi ñoû vaø (2 - i) bi thöùc Coäng xaùc suaát cho ta: traéng coù trong 2 bi ñöôïc choïn ra töø hoäp I, hoäp II. P(B) = P(A0B2 + A1B1 + A2B0) = P(A0B2 ) + P(A1B1) + P(A2B0) Khi ñoù Töø ñaây, do tính ñoäc laäp , Coâng thöùc nhaân xaùc suaát thöù nhaát cho ta: - A0, A1, A2 xung khaéc töøng ñoâi vaø ta coù: P(B) = P(A0)P(B2 ) + P(A1)P(B1) + P(A2)P(B0) = 0,2133. P(A0 )= 0; 11 c) Goïi C laø bieán coá choïn ñöôïc 3 bi ñoû vaø 1 bi traéng. Ta coù: CC91 9 P(A )== ; C = A1B2 + A2B1. 1 2 45 C10 Lyù luaän töông töï nhö treân ta ñöôïc 20 P(C) = P(A1)P(B2 ) + P(A2)P(B1) = 0,4933. CC91 36 P(A2 )== . 2 45 C10 d) Giaû söû ñaõ choïn ñöôïc 3 bi ñoû vaø 1 bi traéng. Khi ñoù bieán coá C ñaõ - B0, B1, B2 xung khaéc töøng ñoâi vaø ta coù: xaûy ra. Do ñoù xaùc suaát ñeå bi traéng coù ñöôïc thuoäc hoäp I trong tröôøng hôïp naøy chính laø xaùc suaát coù ñieàu kieän P(A1/C). Theo Coâng thöùc nhaân xaùc 02 suaát , ta coù CC64 6 P(B0 )==2 ; 45 P(A11 C) = P(C)P(A /C) . C10 11 Suy ra 64 24 CC P(A1 C) P(B1 )==2 ; P(A /C) = . 45 1 C10 P(C) 20 Maø A C = A B neân 15 1 1 2 P(B )==CC64 . 2 2 45 C10 915 P(A11212 C)== P(A B ) P(A )P(B ) == . 0, 0667. - Ai vaø Bj ñoäc laäp. 45 45 - Toång soá bi ñoû coù trong 4 bi choïn ra phuï thuoäc vaøo caùc bieán coá Ai vaø Do ñoù xaùc suaát caàn tìm laø: P(A1/C) = 0,1352. Bj theo baûng sau: B0 B1 B2 Baøi 1.3: Moät loâ haøng chöùa 10 saûn phaåm goàm 6 saûn phaåm toát vaø 4 saûn A0 0 1 2 phaåm xaáu. Khaùch haøng kieåm tra baèng caùch laáy ra töøng saûn phaåm cho A1 1 2 3 ñeán khi naøo ñöôïc 3 saûn phaåm toát thì döøng laïi. A2 2 3 4 a) Tính xaùc suaát ñeå khaùch haøng döøng laïi ôû laàn kieåm tra thöù 3. b) Tính xaùc suaát ñeå khaùch haøng döøng laïi ôû laàn kieåm tra thöù 4. a) Goïi A laø bieán coá choïn ñöôïc 4 bi ñoû. Ta coù: b) Giaû söû khaùch haøng ñaõ döøng laïi ôû laàn kieåm tra thöù 4. Tính xaùc suaát ñeå A = A2 B2 . ôû laàn kieåm tra thöù 3 khaùch haøng gaëp saûn phaåm xaáu. Töø ñaây, do tính ñoäc laäp , Coâng thöùc nhaân xaùc suaát thöù nhaát cho ta: Lôøi giaûi 36 15 P(A) === P(A22 )P(B ) . 0, 2667. 45 45 Goïi Ti, Xi laàn löôït laø caùc bieán coá choïn ñöôïc saûn phaåm toát, xaáu ôû laàn kieåm tra thöù i. a) Goïi A laø bieán coá khaùch haøng döøng laïi ôû laàn kieåm tra thöù 3. Ta coù: b) Goïi B laø bieán coá choïn ñöôïc 2 bi ñoû vaø 2 bi traéng. Ta coù: 3 4 Printed with FinePrint trial version - purchase at www.fineprint.com
  3. A = T1T2T3. Lôøi giaûi Suy ra P(A) = P(T1T2T3) = P(T1) P(T2/T1) P(T3/ T1T2) Goïi Di, Ti, Xi laàn löôït laø caùc bieán coá choïn ñöôïc bi ñoû, bi traéng, bi xanh ôû = (6/10)(5/9)(4/8) = 0,1667. laàn ruùt thöù i. b) Goïi B laø bieán coá khaùch haøng döøng laïi ôû laàn kieåm tra thöù 4. Ta coù: a) Goïi A laø bieán coá ruùt ñöôïc 2 bi traéng, 1 bi xanh vaø 1 bi ñoû. Ta coù: B = X1T2T3T4 + T1X2T3T4 + T1T2X3T4 . ⎡TTXD−−− A xaûy ra ⇔ Ruùt ñöôïc ⎢TXTD−−− Suy ra ⎢ ⎣⎢XTTD−−− P(B) = P(X1T2T3T4 ) + P(T1X2T3T4 ) + P(T1T2X3T4 ) Suy ra = P(X1) P(T2/X1) P(T3/X1T2) P(T4/X1T2T3) A = T1T2X3D4 + T1X2T3D4 + X1T2T3D4 + P(T1) P(X2/T1) P(T3/T1X2) P(T4/T1X2T3) Töø ñaây, do tính xung khaéc töøng ñoâi cuûa caùc bieán coá thaønh phaàn, ta coù: + P(T1) P(T2/T1) P(X3/ T1T2) P(T4/ T1T2 X3) = (4/10)(6/9)(5/8)(4/7) + (6/10)(4/9)(5/8)(4/7)+(6/10)(5/9)(4/8)(4/7) P(A) = P(T1T2X3D4)+ P(T1X2T3D4) + P(X1T2T3D4 ) = 3(4/10)(6/9)(5/8)(4/7) = 0,2857. Theo Coâng thöùc Nhaân xaùc suaát, ta coù P(T1T2X3D4) = P(T1)P(T2/T1)P(X3/T1T2)P(D4/T1T2X3) c) Giaû söû khaùch haøng ñaõ döøng laïi ôû laàn kieåm tra thöù 4. Khi ñoù bieán = (4/12)(3/11)(3/10)(5/9) = 1/66; coá B ñaõ xaûy ra. Do ñoù xaùc suaát ñeå ôû laàn kieåm tra thöù 3 khaùch haøng gaëp saûn phaåm xaáu trong tröôøng hôïp naøy chính laø xaùc suaát coù ñieàu kieän P(T1X2T3D4) = P(T1)P(X2/T1)P(T3/T1X2)P(D4/T1X2T3) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(X3/B). Theo Coâng thöùc nhaân xaùc suaát , ta coù P(X1T2T3D4) = P(X1)P(T2/X1)P(T3/X1T2)P(D4/X1T2T3) P(X33 B) = P(B)P(X /B) . = (3/12)(4/11)(3/10)(5/9) = 1/66. Suy ra P(X B) P(X /B) = 3 . Suy ra P(A) = 3/66 = 1/22 = 0,0455. 3 P(B) Maø X B = T T X T neân 3 1 2 3 4 b) Goïi B laø bieán coá khoâng coù bi traéng naøo ñöôïc ruùt ra. Ta coù: P(X B) = P(T T X T ) = P(T ) P(T /T ) P(X / T T ) P(T / T T X ) 3 1 2 3 4 1 2 1 3 1 2 4 1 2 3 = (6/10)(5/9)(4/8)(4/7) = 0,0952. ⎡D ⎢XD− Suy ra P(X3/B) = 0,3333. B xaûy ra ⇔ Ruùt ñöôïc ⎢ ⎢XXD−− ⎢ Baøi 1.4: Moät hoäp bi goàm 5 bi ñoû, 4 bi traéng vaø 3 bi xanh coù cuøng côõ. Töø ⎣X −−−XXD hoäp ta ruùt ngaãu nhieân khoâng hoøan laïi töøng bi moät cho ñeán khi ñöôïc bi ñoû thì döøng laïi. Tính xaùc suaát ñeå Suy ra a) ñöôïc 2 bi traéng, 1 bi xanh vaø 1 bi ñoû. B = D1 + X1D2 + X1X2D3+ X1X2X3 D4 b) khoâng coù bi traéng naøo ñöôïc ruùt ra. Töø ñaây, do tính xung khaéc töøng ñoâi cuûa caùc bieán coá thaønh phaàn, ta coù: P(B) = P(D1)+ P(X1D2) + P(X1X2D3 ) + P(X1X2X3 D4) Theo Coâng thöùc Nhaân xaùc suaát, ta coù 5 6 Printed with FinePrint trial version - purchase at www.fineprint.com
  4. P(B) = P(D1) + P(X1)P(D2/X1) + P(X1)P(X2/X1)P(D3/X1X2) Suy ra P(B) = 0,66 = 66%. Vaäy tæ leä saûn phaåm loaïi A noùi chung do nhaø maùy saûn xuaát laø 66%. + P(X1)P(X2/X1)P(X3/X1X2)P(D4/X1X2X3) = 5/12+ (3/12)(5/11) + (3/12)(2/11)(5/10) + (3/12)(2/11)(1/10)(5/9) b) Choïn mua ngaãu nhieân moät saûn phaåm X ôû thò tröôøng. Giaû söû ñaõ mua ñöôïc saûn phaåm loaïi A. Theo baïn, saûn phaåm aáy coù khaû naêng do phaân = 5/9 xöôûng naøo saûn xuaát ra nhieàu nhaát? Baøi 1.5: Saûn phaåm X baùn ra ôû thò tröôøng do moät nhaø maùy goàm ba phaân Giaû söû ñaõ mua ñöôïc saûn phaåm loaïi A. Khi ñoù bieán coá B ñaõ xaûy ra. Do ñoù, xöôûng I, II vaø III saûn xuaát, trong ñoù phaân xöôûng I chieám 30%; phaân ñeå bieát saûn phaåm loaïi A ñoù coù khaû naêng do phaân xöôûng naøo saûn xuaát ra xöôûng II chieám 45% vaø phaân xöôûng III chieám 25%. Tæ leä saûn phaåm loaïi nhieàu nhaát ta caàn so saùnh caùc xaùc suaát coù ñieàu kieän P(A1/B), P(A2/B) vaø A do ba phaân xöôûng I, II vaø III saûn xuaát laàn löôït laø 70%, 50% vaø 90%. P(A3/B). Neáu P(Ai/B) laø lôùn nhaát thì saûn phaåm aáy coù khaû naêng do phaân a) Tính tæ leä saûn phaåm loïai A noùi chung do nhaø maùy saûn xuaát. xöôûng thöù i saûn xuaát ra laø nhieàu nhaát. Theo coâng thöùc Bayes ta coù: b) Choïn mua ngaãu nhieân moät saûn phaåm X ôû thò tröôøng. Giaû söû ñaõ mua ñöôïc saûn phaåm loaïi A. Theo baïn, saûn phaåm aáy coù khaû naêng do phaân P(A11 )P(B/A ) 0, 3.0,7 21 P(A1 /B) === ; xöôûng naøo saûn xuaát ra nhieàu nhaát? P(B) 0, 66 66 c) Choïn mua ngaãu nhieân 121 saûn phaåm X (trong raát nhieàu saûn phaåm X) P(A )P(B/A ) 0, 45.0,5 22,5 P(A /B) === 22 ; ôû thò tröôøng. 2 P(B) 0, 66 66 1) Tính xaùc suaát ñeå coù 80 saûn phaåm loaïi A. P(A33 )P(B/A ) 0, 25.0, 9 22,5 2) Tính xaùc suaát ñeå coù töø 80 ñeán 85 saûn phaåm loaïi A. P(A3 /B) === . P(B) 0, 66 66 Lôøi giaûi Vì P(A2/B) = P(A3/B) > P(A1/B) neân saûn phaåm loaïi A aáy coù khaû naêng do phaân xöôûng II hoaëc III saûn xuaát ra laø nhieàu nhaát. Toùm taét: Phaân xöôûng I II III c) Choïn mua ngaãu nhieân 121 saûn phaåm X (trong raát nhieàu saûn phaåm X) Tæ leä saûn löôïng 30% 45% 25% ôû thò tröôøng. Tæ leä loaïi A 70% 50% 90% 1) Tính xaùc suaát ñeå coù 80 saûn phaåm loaïi A. 2) Tính xaùc suaát ñeå coù töø 80 ñeán 85 saûn phaåm loaïi A. a) Ñeå tính tæ leä saûn phaåm loaïi A noùi chung do nhaø maùy saûn xuaát ta choïn mua ngaãu nhieân moät saûn phaåm ôû thò tröôøng. Khi ñoù tæ leä saûn phaåm Aùp duïng coâng thöùc Bernoulli vôùi n = 121, p = 0,66, ta coù: loaïi A chính laø xaùc suaát ñeå saûn phaåm ñoù thuoäc loaïi A. 1) Xaùc suaát ñeå coù 80 saûn phaåm loaïi A laø Goïi B laø bieán coá saûn phaåm choïn mua thuoäc loaïi A. A , A , A laàn löôït laø caùc bieán coá saûn phaåm do phaân xöôûng I, II, III saûn 80 80 41 80 80 41 1 2 3 P (80)== C p q C (0, 66) (0, 34) = 0, 076. xuaát. Khi ñoù A , A , A laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø 121 121 121 1 2 3 P(A ) = 30% = 0,3; P(A ) = 45% = 0,45; P(A ) = 25% = 0,25. 1 2 3 2) Xaùc suaát ñeå coù töø 80 ñeán 85 saûn phaåm loaïi A laø Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: P(B) = P(A1)P(B/A1) + P(A2)P(B/A2) + P(A3)P(B/A3) 85 85 85 k k 121−− k k k 121 k ∑∑P121 (k)== C 121 p q ∑ C 121 (0, 66) (0, 34) = 0, 3925. Theo giaû thieát, k80== k80 k80 = P(B/A ) = 70% = 0,7; P(B/A ) = 50% = 0,5; P(B/A ) = 90% = 0,9. 1 2 3 7 8 Printed with FinePrint trial version - purchase at www.fineprint.com
  5. Baøi 1.6: Coù ba cöûa haøng I, II vaø III cuøng kinh doanh saûn phaåm Y. Tæ leä P(A2/B) vaø P(A3/B). Neáu P(Ai/B) laø lôùn nhaát thì cöûa haøng thöù i coù nhieàu saûn phaåm loaïi A trong ba cöûa haøng I, II vaø III laàn löôït laø 70%, 75% vaø khaû naêng ñöôïc choïn nhaát. 50%. Moät khaùch haøng choïn nhaãu nhieân moät cöûa haøng vaø töø ñoù mua moät Theo coâng thöùc Bayes ta coù: saûn phaåm a) Tính xaùc suaát ñeå khaùch haøng mua ñöôïc saûn phaåm loaïi A. P(A11 )P(B/A ) (1 / 3).0,7 70 P(A1 /B) === ; b) Giaû söû ñaõ mua ñöôïc saûn phaåm loaïi A. Theo baïn, khaû naêng ngöôøi P(B) 0, 65 195 khaùch haøng aáy ñaõ choïn cöûa haøng naøo laø nhieàu nhaát? P(A )P(B/A ) (1 / 3).0,75 75 P(A /B) === 22 ; 2 P(B) 0, 65 195 Lôøi giaûi P(A )P(B/A ) (1 / 3).0,5 50 P(A /B) === 33 . 3 P(B) 0, 65 195 Toùm taét: Cöûa haøng I II III Vì P(A /B) > P(A /B) > P(A /B) neân cöûa haøng II coù nhieàu khaû naêng ñöôïc Tæ leä loaïi A 70% 75% 50% 2 1 3 choïn nhaát. Choïn nhaãu nhieân moät cöûa haøng vaø töø ñoù mua moät saûn phaåm. Baøi 1.7: Coù hai hoäp I vaø II moãi hoäp chöùa 12 bi, trong ñoù hoäp I goàm 8 bi ñoû, 4 bi traéng; hoäp II goàm 5 bi ñoû, 7 bi traéng. Laáy ngaãu nhieân töø hoäp I a) Tính xaùc suaát ñeå khaùch haøng mua ñöôïc saûn phaåm loaïi A. ba bi roài boû sang hoäp II; sau ñoù laáy ngaãu nhieân töø hoäp II boán bi. a) Tính xaùc suaát ñeå laáy ñöôïc ba bi ñoû vaø moät bi traéng töø hoäp II. Goïi B laø bieán coá saûn phaåm choïn mua thuoäc loaïi A. b) Giaû söû ñaõ laáy ñöôïc ba bi ñoû vaø moät bi traéng töø hoäp II. Tìm xaùc suaát A1, A2, A3 laàn löôït laø caùc bieán coá choïn cöûa haøng I, II, III. Khi ñoù A1, A2, ñeå trong ba bi laáy ñöôïc töø hoäp I coù hai bi ñoû vaø moät bi traéng. A3 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø Lôøi giaûi P(A1) = P(A2) = P(A3) = 1/3. Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: Goïi A laø bieán coá choïn ñöôïc 3 bi ñoû vaø 1 bi traéng töø hoäp II. P(B) = P(A1)P(B/A1) + P(A2)P(B/ A2)+ P(A3)P(B/A3) A (i = 0, 1, 2, 3) laø bieán coá coù i bi ñoû vaø (3-i) bi traéng coù trong 3 bi choïn Theo giaû thieát, i ra töø hoäp I. Khi ñoù A0, A1, A2, A3 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø P(B/A1) = 70% = 0,7; ta coù: P(B/A2) = 75% = 0,75; 03 P(B/A3 = 50% = 0,5. CC84 4 P(A0 )== ; 3 220 C12 Suy ra P(B) = 0,65 = 65%. Vaäy xaùc suaát ñeå khaùch haøng mua ñöôïc saûn 12 48 phaåm loaïi A laø 65%. P(A )==CC84 ; 1 3 220 C12 b) Giaû söû ñaõ mua ñöôïc saûn phaåm loaïi A. Theo baïn, khaû naêng ngöôøi 21 112 khaùch haøng aáy ñaõ choïn cöûa haøng naøo laø nhieàu nhaát? P(A )==CC84 ; 2 3 220 C12 Giaû söû ñaõ mua ñöôïc saûn phaåm loaïi A. Khi ñoù bieán coá B ñaõ xaûy ra. Do ñoù, 30 CC84 56 ñeå bieát saûn phaåm loaïi A ñoù coù khaû naêng khaùch haøng aáy ñaõ choïn cöûa P(A3 )== . 3 220 12 haøng naøo laø nhieàu nhaát ta caàn so saùnh caùc xaùc suaát coù ñieàu kieän P(A1/B), C a) Tính xaùc suaát ñeå laáy ñöôïc 3 bi ñoû vaø 1 bi traéng töø hoäp II. 9 10 Printed with FinePrint trial version - purchase at www.fineprint.com
  6. Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: Lôøi giaûi P(A)=P(A0)P(A/A0)+P(A1)P(A/A1)+P(A2)P(A/A2)+P(A3)P(A/A3) Theo coâng thöùc tính xaùc suaát löïa choïn, ta coù a) Goïi Aj (j = 1, 2, 3) laø bieán coá laáy ñöôïc bi traéng töø hoäp thöù j. Khi ñoù A1, 31 A2, A3 ñoäc laäp vaø CC510 100 P(A / A0 )==4 ; 14 1365 P(A )== ; P(A ) ; C15 1155 31 180 23 P(A / A )==CC69 ; P(A )== ;P(A ) ; 1 4 1365 2255 C15 31 32 280 P(A33 )== ;P(A ) . P(A / A )==CC78 ; 55 2 4 1365 C15 1) Goïi A laø bieán coá laáy ñöôïc caû 3 bi traéng. Ta coù 31 A = AAA.123 CC87 392 P(A / A3 )==4 . Suy ra P(A) = P(A ) P(A ) P(A ) = 0,048. 1365 1 2 3 C15 2) Goïi B laø bieán coá laáy 2 bi ñen, 1 bi traéng. Ta coù Suy ra xaùc suaát caàn tìm laø P(A) = 0,2076. B=++ AAA AAA AAA 123 123 123 Suy ra P(B) =0,464 . b) Giaû söû ñaõ laáy ñöôïc 3 bi ñoû vaø 1 bi traéng töø hoäp II. Tìm xaùc suaát ñeå trong 3 bi laáy ñöôïc töø hoäp I coù 2 bi ñoû vaø 1 bi traéng. 3) Giaû söû trong 3 vieân laáy ra coù ñuùng 1 bi traéng. Khi ñoù bieán coá B ñaõ xaûy ra. Do ñoù xaùc suaát ñeå bi traéng ñoù laø cuûa hoäp thöù nhaát trong tröôøng Giaû söû ñaõ laáy ñöôïc 3 bi ñoû vaø 1 bi traéng töø hoäp II. Khi ñoù bieán coá A ñaõ hôïp naøy chính laø xaùc suaát coù ñieàu kieän P(A /B). Theo coâng thöùc Nhaân xaùc xaûy ra. Do doù xaùc suaát ñeå trong 3 bi laáy ñöôïc töø hoäp I coù 2 bi ñoû vaø 1 bi 1 suaát ta coù: traéng trong tröôøng hôïp naøy chính laø xaùc suaát coù ñieàu kieän P(A2/A). Aùp P(A B) = P(B)P(A /B) duïng coâng thöùc Bayes, ta coù: 1 1 112 280 Suy ra . P(A1 B) P(A22 )P(A/A ) P(A /B) = . P(A /A) === 220 1365 0, 5030. 1 2 P(A) 0, 2076 P(B) Maø A1123BAAA= neân lyù luaän töông töï nhö treân ta ñöôïc P(A1B) = 0,048. Vaäy xaùc suaát caàn tìm laø P(A2/A) = 0,5030. Suy ra Baøi 1.8: Coù ba hoäp moãi hoäp ñöïng 5 vieân bi trong ñoù hoäp thöù nhaát coù 1 bi P(A1/B) =0,1034 . traéng, 4 bi ñen; hoäp thöù hai coù 2 bi traéng, 3 bi ñen; hoäp thöù ba coù 3 bi b) Choïn ngaãu nhieân moät hoäp roài töø hoäp ñoù laáy ngaãu nhieân ra 3 bi. traéng, 2 bi ñen. Tính xaùc suaát ñöôïc caû 3 bi ñen. a) Laáy ngaãu nhieân töø moãi hoäp moät bi. 1) Tính xaùc suaát ñeå ñöôïc caû 3 bi traéng. Goïi A laø bieán coá laáy ñöôïc caû 3 bi ñen. 2) Tính xaùc suaát ñöôïc 2 bi ñen, 1 bi traéng. A1, A2, A3 laàn löôït laø caùc bieán coá choïn ñöôïc hoäp I, II, III. Khi ñoù A1, A2, 3) Giaû söû trong 3 vieân laáy ra coù ñuùng 1 bi traéng.Tính xaùc suaát ñeå bi A3 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø traéng ñoù laø cuûa hoäp thöù nhaát. P(A1) = P(A2) = P(A3) = 1/3. b) Choïn ngaãu nhieân moät hoäp roài töø hoäp ñoù laáy ngaãu nhieân ra 3 bi. Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: Tính xaùc suaát ñöôïc caû 3 bi ñen. P(A) = P(A1)P(A/A1) + P(A2)P(A/ A2)+ P(A3)P(A/A3) Theo coâng thöùc xaùc suaát löïa choïn, ta coù: 11 12 Printed with FinePrint trial version - purchase at www.fineprint.com
  7. Aùp duïng Coâng thöùc Bayes vaø söû duïng keát quaû vöøa tìm ñöôïc ôû caâu a) ta CC03 41CC03 coù 14==23 P(A/A123 ) = 33 ;P(A/A ) = ;P(A/A ) =0. CC5510 10 P(A11 )P(A/A ) (10/20).0,375 P(A1 /A) === 0, 4630. Suy ra P(A) = 0,1667. P(A) 0,4050 Baøi 1.9: Coù 20 hoäp saûn phaåm cuøng loïai, moãi hoäp chöùa raát nhieàu saûn Baøi 1.10: Coù 10 sinh vieân ñi thi, trong ñoù coù 3 thuoäc loaïi gioûi, 4 khaù vaø 3 phaåm, trong ñoù coù 10 hoäp cuûa xí nghieäp I, 6 hoäp cuûa xí nghieäp II vaø trung bình. Trong soá 20 caâu hoûi thi qui ñònh thì sinh vieân loïai gioûi traû lôøi 4 hoäp cuûa xí nghieäp III. Tæ leä saûn phaåm toát cuûa caùc xí nghieäp laàn ñöôïc taát caû, sinh vieân khaù traû lôøi ñöôïc 16 caâu coøn sinh vieân trung bình löôït laø 50%, 65% vaø 75%. Laáy ngaãu nhieân ra moät hoäp vaø choïn ngaãu ñöôïc 10 caâu. Goïi ngaãu nhieân moät sinh vieân vaø phaùt moät phieáu thi goàm nhieân ra 3 saûn phaåm töø hoäp ñoù. 4 caâu hoûi thì anh ta traû lôøi ñöôïc caû 4 caâu hoûi. Tính xaùc suaát ñeå sinh vieân a) Tính xaùc suaát ñeå trong 3 saûn phaåm choïn ra coù ñuùng 2 saûn phaåm ñoù thuoäc loaïi khaù. toát. Lôøi giaûi b) Giaû söû trong 3 saûn phaåm choïn ra coù ñuùng 2 saûn phaååm toát. Tính Toùm taét: xaùc suaát ñeå 2 saûn phaåm toát ñoù cuûa xí nghieäp I. Xeáp loaïi sinh vieân Gioûi Khaù Trung bình Lôøi giaûi Soá löôïng 3 4 3 Soá caâu traû lôøi ñöôïc/20 20 16 10 Goïi A laø bieán coá trong 3 saûn phaåm choïn ra coù ñuùng 2 saûn phaåm toát. A (j = 1, 2, 3) laø bieán coá choïn ñöôïc hoäp cuûa xí nghieäp thöù j. j Goïi A laø bieán coá sinh vieân traû lôøi ñöôïc caû 3 caâu hoûi. Khi ñoù A1, A2, A3 laø moät ñaày ñuû, xung khaéc töøng ñoâi vaø ta coù: 1 A1, A2, A3 laàn löôït laø caùc bieán coá sinh vieân thuoäc loaïi Gioûi, Khaù; C10 10 Trung bình. P(A1 )==1 ; 20 C20 1 Yeâu caàu cuûa baøi toaùn laø tính xaùc suaát coù ñieàu kieän P(A2/A). 6 P(A )==C6 ; 2 1 20 C20 Caùc bieán coá A1, A2, A3 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi, vaø ta coù: 1 P(A ) = 3/10; P(A ) = 4/10; P(A ) = 3/10. 4 1 2 3 P(A )==C4 . Theo coâng thöùc Bayes, ta coù 3 1 20 C20 P(A )P(A/A ) P(A /A) = 22 . Maët khaùc, töø giaû thieát, theo coâng thöùc Bernoulli, ta coù 2 P(A) 22 P(A / A13 )=−= C (0, 5) (1 0, 5) 0, 375 Maët khaùc, theo coâng thöùc xaùc suaát ñaày ñuû, ta coù 22 P(A) = P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3). P(A / A23 )=−= C (0,65) (1 0,65) 0, 443625 22 Theo coâng thöùc tính xaùc suaát löïa choïn, ta coù: P(A / A33 )=−= C (0,75) (1 0,25) 0, 421875 4 C20 Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù P(A / A1 )==4 1; C20 P(A) = P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) 40 = (10/20).0,375 + (6/20). 0,443625 + (4/20). 0,421875 = 0,4050. C16 C 4 1820 P(A / A2 )==4 ; b) Giaû söû trong 3 saûn phaåm choïn ra coù ñuùng 2 saûn phaååm toát. Khi ñoù, C484520 bieán coá A ñaõ xaûy ra. Do ñoù, xaùc suaát ñeå 2 saûn phaåm toát ñoù cuûa xí 40 CC10 10 210 P(A / A3 )==4 . nghieäp I chính laø xaùc suaát coù ñieàu kieän P(A1/A). C484520 13 14 Printed with FinePrint trial version - purchase at www.fineprint.com
  8. Suy ra P(A2/A) = 0,3243. - Bi vaø Cj ñoäc laäp. Baøi 1.11: Coù hai hoäp I vaø II, trong ñoù hoäp I chöùa 10 bi traéng vaø 8 bi ñen; hoäp II chöùa 8 bi traéng vaø 6 bi ñen. Töø moãi hoäp ruùt ngaãu nhieân 2 bi boû ñi, - Toång soá bi traéng coù trong 4 bi choïn ra phuï thuoäc vaøo caùc bieán coá Bi vaø sau ñoù boû taát caû caùc bi coøn laïi cuûa hai hoäp vaøo hoäp III (roãng). Laáy ngaãu Cj theo baûng sau: nhieân 2 bi töø hoäp III. Tính xaùc suaát ñeå trong 2 bi laáy töø hoäp III coù 1 traéng, 1 ñen. C0 C1 C2 B0 0 1 2 Lôøi giaûi B1 1 2 3 B2 2 3 4 Goïi A laø bieán coá bi laáy ñöôïc 1 traéng, 1 ñen. Aj (j = 0, 1, 2, 3, 4) laø bieán coá coù j bi traéng vaø (4-j) bi ñen coù trong 4 A0 = B0C0 ⇒ P(A0) = P(B0)P(C0) = 20/663. bi boû ñi (töø caû hai hoäp I vaø II). Khi ñoù A0, A1, A2 , A3, A4 laø moät heä ñaày ñuû, A1 = B0C1 + B1C0 ⇒ P(A1) = P(B0)P(C1 ) + P(B1)P(C0) = 848/4641. xung khaéc töøng ñoâi. A2 = B0C2 + B1C1 + B2C0 ⇒ P(A2) = P(B0)P(C2)+P(B1)P(C1)+P(B2)P(C0) Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù =757/1989. P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2)+ P(A3)P(A/A3) + A3 = B1C2 + B2C1 ⇒ P(A3) = P(B1)P(C2)+P(B2)P(C1) = 4400/13923. P(A4)P(A/A4). A4 = B2C2 ⇒ P(A4) = P(B2)P(C2) = 20/221. trong ñoù CC11 10 Töø ñoù suy ra P(A) = 0,5080. 18 10 = P(A/A0 ) = 2 (Vì khi A0 ñaõ xaûy ra thì trong hoäp III coù 28 bi goàm C28 21 18 traéng , 10 ñen). Töông töï, Baøi 1.12: Coù hai hoäp cuøng côõ. Hoäp thöù nhaát chöùa 4 bi traéng 6 bi xanh, 11 11 CC17 11187 CC 16 12 32 hoäp thöù hai chöùa 5 bi traéng vaø 7 bi xanh. Choïn ngaãu nhieân moät hoäp roài P(A/A12 ) = == ;P(A/A ) = ; CC22378 63 töø hoäp ñoù laáy ra 2 bi thì ñöôïc 2 bi traéng. Tính xaùc suaát ñeå vieân bi tieáp 28 28 CC11 65CC11 14 theo cuõng laáy töø hoäp treân ra laïi laø bi traéng. P(A/A ) = 15 13 == ;P(A/A ) = 14 14 . 3422 CC28126 28 27 Lôøi giaûi Baây giôø ta tính P(A0); P(A1); P(A2); P(A3); P(A4). Goïi Bi , Ci (i = 0, 1, 2) laàn löôït laø caùc bieán coá coù i bi traéng vaø (2 - i) bi Goïi A laø bieán coá 2 bi laáy ñaàu tieân laø bi traéng. ñen coù trong 2 bi ñöôïc choïn ra töø hoäp I, hoäp II. Khi ñoù 1 A laø bieán coá bi laáy laàn sau laø bi traéng. 2 Baøi toùan yeâu caàu tính P(A2/A1). - B0, B1, B2 xung khaéc vaø ta coù: Theo coâng thöùc nhaân xaùc suaát, ta coù P(A A ) = P(A ) P(A /A ). Suy ra 1 2 1 2 1 02 11 20 CC10 828 CC 10 8 80 CC 10 8 5 P(A A ) P(B012 )==222 ; P(B ) == ;P(B ) == . 12 153 153 17 P(A21 / A ) = . CCC18 18 18 P(A1 ) Baây giôø ta tính caùc xaùc suaát P(A1) vaø P(A1A2). - C , C , C xung khaéc vaø ta coù: 0 1 2 Goïi B1, B2 laàn löôït laø caùc bieán coá choïn ñöôïc hoäp I, hoäp II. Khi ñoù B1, B2 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø ta coù: P(B1) = P(B2) = 0,5. 02 11 20 CC8615 CC 86 48 CC 86 28 Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù P(C012 )==222 ;P(C ) == ;P(C ) == . 91 91 91 P(A1) = P(B1) P(A1/ B1) + P(B2) P(A1/ B2) CCC14 14 14 15 16 Printed with FinePrint trial version - purchase at www.fineprint.com
  9. aa1− Maø . 20 a1− P(A / A) ==abab1++− CC46 6 1 aa1b− a ab1+− P(A11 / B )==2 ; + 45 abab1abab1+ +− + +− C10 20 10 P(A / B )==CC57 . Baøi 1.14: Coù 3 hoäp phaán, trong ñoù hoäp I chöùa 15 vieân toát vaø 5 vieân xaáu, 12 2 66 C12 hoäp II chöùa 10 vieân toát vaø 4 vieân xaáu, hoäp III chöùa 20 vieân toát vaø 10 vieân neân P(A1) = 47/330. xaáu. Ta gieo moät con xuùc xaéc caân ñoái. Neáu thaáy xuaát hieän maët 1 chaám thì Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù ta choïn hoäp I; neáu xuaát hieän maët 2 hoaëc 3 chaám thì choïn hoäp II, coøn xuaát P(A1A2) = P(B1) P(A1A2/ B1) + P(B2) P(A1A2/ B2). hieän caùc maët coøn laïi thì choïn hoäp III. Töø hoäp ñöôïc choïn laáy ngaãu nhieân Maø ra 4 vieân phaán. Tìm xaùc suaát ñeå laáy ñöôïc ít nhaát 2 vieân toát. 62 1 P(A A / B )=== P(A / B )P(A / A B ) ; 12 1 1 1 2 11 45 8 30 Lôøi giaûi 10 3 1 P(AA /B )=== P(A /B )P(A /AB ) . 12 2 1 2 2 12 66 10 22 Goïi A laø bieán coá choïn ñöôïc ít nhaát 2 vieân phaán toát. A (j =1,2, 3) laø bieán coá choïn ñöôïc hoäp thöù j. Khi ñoù A , A , A laø heä neân P(A1A2) = 13/330. Suy ra xaùc suaát caàn tìm laø P(A2/A1) =13/47= 0,2766. j 1 2 3 ñaày ñuû, xung khaéc töøng ñoâi vaø ta coù: Baøi 1.13: Moät loâ haøng goàm a saûn phaåm loaïi I vaø b saûn phaåm loaïi II ñöôïc - A1 xaûy ra khi vaø chæ khi thaûy con xuùc xaéc, xuaát hieän maët 1 chaám, do ñoùng gôùi ñeå göûi cho khaùch haøng. Nôi nhaän kieåm tra laïi thaáy thaát laïc 1 ñoù P(A1) = 1/6. saûn phaåm. Choïn ngaãu nhieân ra 1 saûn phaåm thì thaáy ñoù laø saûn phaåm loaïi - Töông töï, P(A2) = 2/6; P(A3) = 3/6. I. Tính xaùc suaát ñeå saûn phaåm thaát laïc cuõng thuoäc loaïi I. Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù Lôøi giaûi P(A) = P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3). Töø giaû thieát ta coù: 22 31 40 Goïi A laø bieán coá saûn phaåm ñöôïc choïn ra thuoäc loïai I. C15 C 5 C 15 C 5 C 15 C 5 4690 P(A / A1 )=++=444 ; A1, A2 laàn löôït laø caùc bieán coá saûn phaåm thaát laïc thuoäc loaïi I, loaïi II. C20 C 20 C 20 4845 22 31 40 Yeâu caàu cuûa baøi toaùn laø tính xaùc suaát coù ñieàu kieän P(A1/A). CC CC CC 960 P(A / A )=++=10 4 10 4 10 4 ; Ta thaáy A1, A2 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø 2 444 C14 C 14 C 14 1001 CC10ab CC 01 P(A )==ab ; P(A ) == ab . C22 C C 31 C C 40 C 24795 1211 P(A / A )=++=20 10 20 10 20 10 . Cabab++++ Cab ab 3 444 C30 C 30 C 30 27405 Theo coâng thöùc Bayes, ta coù P(A11 )P(A / A ) P(A 11 )P(A / A ) P(A1 / A) == Suy ra P(A) =0,9334. P(A) P(A1122 )P(A / A )+ P(A )P(A / A ) Maø Baøi 1.15: Coù hai kieän haøng I vaø II. Kieän thöù nhaát chöùa 10 saûn phaåm, CC10a1− CC 10 a trong ñoù coù 8 saûn phaåm loaïi A. Kieän thöù hai chöùa 20 saûn phaåm, trong ñoù ==a1−− b == a b1 P(A / A12 )11 ; P(A / A ) . coù 4 saûn phaåm loaïi A. Laáy töø moãi kieän 2 saûn phaåm. Sau ñoù, trong 4 saûn Cab1+− a+− b1 C ab1 +− a +− b1 phaåm thu ñöôïc choïn ngaãu nhieân 2 saûn phaåm. Tính xaùc suaát ñeå trong 2 neân saûn phaåm choïn ra sau cuøng coù ñuùng 1 saûn phaåm loaïi A. Lôøi giaûi 17 18 Printed with FinePrint trial version - purchase at www.fineprint.com
  10. 02 120 P(C )==CC416 ; Goïi C laø bieán coá trong 2 saûn phaåm choïn ra sau cuøng coù ñuùng 1 saûn 0 2 190 phaåm loaïi A. C20 11 A (j = 0, 1, 2, 3, 4 ) laø bieán coá coù j saûn phaåm loïai A vaø (4-j) saûn j CC416 64 P(C1 )==2 ; phaåm loïai B coù trong 4 saûn phaåm laáy töø hai kieän I vaø II. Khi ñoù A0, A1, 190 C20 A , A , A laø moät heä ñaày ñuû, xung khaéc töøng ñoâi. Theo coâng thöùc xaùc suaát 2 3 4 20 6 ñaày ñuû, ta coù P(C )==CC416 ; 2 2 190 C20 P(C) = P(A0)P(C/A0) + P(A1)P(C/A1) + P(A2)P(C/A2) + P(A3)P(C/A3) - Bi vaø Cj ñoäc laäp. + P(A4)P(C/A4). - Toång soá sp A coù trong 4 sp choïn ra phuï thuoäc vaøo caùc bieán coá Bi vaø Ta coù: C theo baûng sau: P(C/A ) = 0; j 0 CC11 3 C C C P(C/A ) = 13= 0 1 2 1 2 B 0 1 2 C4 6 0 B 1 2 3 CC11 4 1 22= B 2 3 4 P(C/A2 ) = 2 2 C4 6 CC11 3 Ta coù: P(C/A ) = 31= 3 2 A1 = B0C1 + B1C0 . C4 6 A2 = B0C2 + B1C1 + B2C0 . P(C/A4 ) =0. A3 = B1C2 + B2C1 . Baây giôø ta tính P(A1); P(A2); P(A3). Töø ñaây, nhôø caùc coâng thöcù coäng vaø nhaân xaùc suaát ta tính ñöôïc: Goïi Bi , Ci (i = 0, 1, 2) laàn löôït laø caùc bieán coá coù i sp A vaø (2 - i) sp B coù trong 2 sp ñöôïc choïn ra töø kieän I, kieän II. Khi ñoù P(A1) = 0,2320 ; P(A2) = 0,5135 ; P(A3) = 0,2208 . - B0, B1, B2 xung khaéc töøng ñoâi vaø ta coù: 02 1 Suy ra xaùc suaát caàn tìm laø P(C) = 0,5687. P(B )==CC82 ; 0 2 45 C10 11 Baøi 1.16: Moät xaï thuû baén 10 vieân ñaïn vaøo moät muïc tieâu. Xaùc suaát ñeå 1 CC82 16 vieân ñaïn baén ra truùng muïc tieâu laø 0,8 . Bieát raèng: Neáu coù 10 vieân truùng P(B1 )==2 ; 45 thì muïc tieâu chaéc chaén bò dieät. Neáu coù töø 2 ñeán 9 vieân truùng thì muïc tieâu C10 20 bò dieät vôiù xaùc suaát 80%. Neáu coù 1 vieân truùng thì muïc tieâu bò dieät vôùi xaùc 28 P(B )==CC82 . suaát 20%. 2 2 45 C10 a) Tính xaùc suaát ñeå muïc tieâu bò dieät. - C0, C1, C2 xung khaéc töøng ñoâi vaø ta coù: b) Giaû söû muïc tieâu ñaõ bò dieät. Tính xaùc suaát coù 10 vieân truùng. Lôøi giaûi Toùm taét: - Soá vieân baén ra: 10 vieân. - Xaùc suaát truùng cuûa moãi vieân: 0,8. 19 20 Printed with FinePrint trial version - purchase at www.fineprint.com
  11. Lôøi giaûi Soá vieân truùng 1 2-9 10 Xaùc suaát muïc tieâu bò dieät 20% 80% 100% Goïi Aj (j = 0, 1, 2) laø caùc bieán coá coù j saûn phaåm loaïi A vaø (2-j) saûn phaåm khoâng thuoäc loaïi A coù trong 2 saûn phaåm do maùy saûn xuaát. a) Goïi A laø bieán coá muïc tieâu bò dieät. Goïi Bj (j = 0, 1, 2, 3) laø caùc bieán coá coù j saûn phaåm loaïi A vaø (3-j) saûn A0, A1, A2, A3 laàn löôït laø caùc bieán coá coù 0; 1; 2-9; 10 vieân truùng. Khi phaåm khoâng thuoäc loaïi A coù trong 3 saûn phaåm laáy töø loâ haøng. ñoù, A0, A1, A2, A3 laø moät heä ñaày ñuû, xung khaéc töøng ñoâi vaø giaû thieát cho Khi ñoù ta: - A0, A1, A2 xung khaéc töøng ñoâi vaø theo coâng thöùc Bernoulli vôùi n = 2; p P(A/A0) = 0; P(A/A1) = 20% = 0,2; = 0,6; q = 0,4 ta coù: 0 02 2 P(A/A2) = 80%= 0,8; P(A/A3) = 100% = 1. P(A )=== p q (0,4) 0,16; 0 C2 1 P(A )== p11 q 2(0,6)(0,4) = 0,48; Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: 1 C2 P(A )===2 p20 q (0, 6) 2 0, 36. 2 C2 P(A) = P(A )P(A/A ) + P(A )P(A/A ) + P(A )P(A/A ) + P(A )P(A/A ). 0 0 1 1 2 2 3 3 - B , B , B , B xung khaéc töøng ñoâi vaø theo coâng thöùc tính xaùc suaát löïa 0 1 2 3 choïn vôùi N = 10, N = 6, n= 3 ta coù (vì loâ haøng goàm 10 saûn phaåm vôùi tæ Theo coâng thöùc Bernoulli vôùi n =10; p = 0,8, q = 0,2, ta coù A leä saûn phaåm loaïi A laø 60%, nghóa laø loâ haøng goàm 6 saûn phaåm loaïi A vaø 4 P(A )== q10 (0, 2) 10 ; 0 saûn phaåm khoâng thuoäc loaïi A): 19 9 03 P(A110 )== C pq 10(0, 8)(0, 2) ; 4 CC64 10 10 P(B0 )==3 ; P(A3 )== p (0, 8) ; 120 C10 10 9 10 P(A )=− 1 P(A ) − P(A ) − P(A ) =− 1 (0,2) − 10(0,8)(0,2) − (0,8) . 12 2013 36 P(B )==CC64 ; Suy ra P(A) = 0,8215. 1 3 120 C10 21 b) Giaû söû muïc tieâu ñaõ bò dieät. Khi ñoù bieán coá A ñaõ xaûy ra. Do ñoù xaùc 60 P(B )==CC64 ; suaát coù 10 vieân truùng trong tröôøng hôïp naøy chính laø xaùc suaát coù ñieàu kieän 2 3 120 C10 P(A3/A). 30 Theo coâng thöùc Bayes, ta coù: 20 P(B )==CC64 . 3 3 120 C10 P(A)P(A/A)33 P(A3 / A) = - A vaø B ñoäc laäp. P(A) i j Töø ñaây ta tính ñöôïc P(A3/A) = 0,1307. a) Goïi C laø bieán coá soá saûn phaåm loaïi A coù trong 2 saûn phaåm do maùy saûn xuaát baèng soá saûn phaåm loaïi A coù trong 2 saûn phaåm ñöôïc laáy ra töø loâ haøng. Baøi 1.17: Moät maùy saûn xuaát saûn phaåm vôùi tæ leä saûn phaåm loaïi A laø 60%. Ta coù: Moät loâ haøng goàm 10 saûn phaåm vôùi tæ leä saûn phaåm loaïi A laø 60%. Cho maùy C = A B + A B + A B . saûn xuaát 2 saûn phaåm vaø töø loâ haøng laáy ra 3 saûn phaåm. 0 0 1 1 2 2 a) Tính xaùc suaát ñeå soá saûn phaåm loaïi A coù trong 2 saûn phaåm do maùy saûn Töø ñaây, do tính xung khaéc vaø ñoäc laäp, caùc coâng thöùc coäng vaø nhaân xaùc xuaát baèng soá saûn phaåm loaïi A coù trong 3 saûn phaåm ñöôïc laáy ra töø loâ haøng. suaát cho ta: b) Giaû söû trong 5 saûn phaåm thu ñöôïc coù 2 saûn phaåm loaïi A. Tính xaùc suaát ñeå 2 saûn phaåm loaïi A ñoù ñeàu do maùy saûn xuaát. P(C) = P(A0)P(B0)+ P(A1)P(B1)+ P(A2)P(B2) = 0,3293. 21 22 Printed with FinePrint trial version - purchase at www.fineprint.com
  12. b) Goïi D laø bieán coá coù 2 saûn phaåm loaïi A trong 5 saûn phaåm coù ñöôïc. a) Goïi A laø bieán coá laáy ñöôïc 1sp toát, 1sp xaáu töø loâ I. Giaû söû trong 5 saûn phaåm treân coù 2 saûn phaåm loaïi A. Khi ñoù bieán coá D ñaõ Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: xaûy ra. Do ñoù, xaùc suaát ñeå 2 saûn phaåm loaïi A ñoù ñeàu do maùy saûn xuaát chính laø xaùc suaát coù ñieàu kieän P(A2/D). P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3). Theo coâng thöùc nhaân xaùc suaát ta coù: P(A D) Töø giaû thieát ta suy ra trong loâ I coù 15.60% = 9 sp toát vaø 6 sp xaáu. Do ñoù P(A /D) = 2 . 2 P(D) theo coâng thöùc tính xaùc suaát löïa choïn, ta coù: 11 Nhaän xeùt raèng toång soá saûn phaåm loaïi A coù trong 5 saûn phaåm thu ñöôïc CC99 81 P(A / A0 )==2 ; phuï thuoäc vaøo caùc bieán coá Ai vaø Bj theo baûng sau: C15318 CC11 80 ==10 8 B0 B1 B2 B3 P(A / A1 )2 ; C15318 A0 0 1 2 3 CC11 77 A1 1 2 3 4 P(A / A )==11 7 ; 2 C1532 A2 2 3 4 5 18 11 Suy ra CC12 6 72 P(A / A3 )==2 . D = A0 B2 + A1B1 + A2B0 vaø A2D = A2B0 . C15318 Töø ñaây, ta tính ñöôïc P(D) = 0,236 ; P(A D) = 0,012. Suy ra xaùc suaát caàn 2 Suy ra xaùc suaát caàn tìm laø: P(A) = 0,5035 tìm laø b) Goïi B laø bieán coá laáy ñöôïc 1sp toát, 1sp xaáu töø loâ I, trong ñoù sp toát coù P(A /D) = 0,0508. 2 trong loâ I töø tröôùc. Theo coâng thöùc xaùc suaát ñaày ñuû, ta coù: Baøi 1.18: Coù hai loâ haøng, moãi loâ chöùa 60% saûn phaåm toát, trong ñoù loâ I P(B) = P(A0)P(B/A0) + P(A1)P(B/A1) + P(A2)P(B/A2) + P(A3)P(B/A3). chöùa 15 saûn phaåm, loâ II chöùa raát nhieàu saûn phaåm. Töø loâ II laáy ra 3 saûn phaåm boû vaøo loâ I, sau ñoù töø loâ I laáy ra 2 saûn phaåm. Ta coù: a) Tính xaùc suaát laáy ñöôïc 1sp toát, 1sp xaáu töø loâ I. CC11 81 b) Tính xaùc suaát laáy ñöôïc 1sp toát, 1sp xaáu töø loâ I, trong ñoù sp toát coù P(B / A )==99 ; 0 C1532 trong loâ I töø tröôùc. 18 11 c) Giaû söû ñaõ laáy ñöôïc 1sp toát, 1sp xaáu töø loâ I. Tính xaùc suaát ñaõ laáy CC98 72 P(B / A1 )==2 ; ñöôïc 2sp toát, 1sp xaáu töø loâ II. C15318 Lôøi giaûi CC11 63 P(B / A )==97 ; 2 2 C15318 Goïi A (j = 0,1, 2, 3) laø bieán coá coù j saûn phaåm toát vaø (3-j) saûn phaåm xaáu coù j CC11 54 trong 3 saûn phaåm ñöôïc choïn ra töø loâ II. Khi ñoù A , A , A , A laø moät heä 96 0 1 2 3 P(B / A3 )==2 . ñaày ñuû, xung khaéc töøng ñoâi. Theo coâng thöùc Bernoulli ta coù: C15318 003 3 Suy ra xaùc suaát caàn tìm laø: P(B) = 0,4235. P(A03 )=== C p q (0, 4) 0,064; 112 1 2 P(A13 )== C p q 3(0, 6) (0, 4) = 0, 288; c) Giaû söû ñaõ laáy ñöôïc 1sp toát, 1sp xaáu töø loâ I. Khi ñoù bieán coá A ñaõ xaûy ra. P(A )== C221 p q 3(0,6) 2 (0,4) 1 = 0,432; 23 Do ñoù xaùc suaát ñaõ laáy ñöôïc 2sp toát, 1sp xaáu töø loâ II trong tröôøng hôïp naøy P(A )=== C330 p q (0, 6) 3 0,216. 33 chính laø XS coù ñieàu kieän P(A2/A). Theo coâng thöùc Bayes, ta coù: 23 24 Printed with FinePrint trial version - purchase at www.fineprint.com
  13. 77 0, 432. P(A )P(A / A ) P(A / A)===22 153 0, 4318. 2 P(A) 0, 5035 * 25 Printed with FinePrint trial version - purchase at www.fineprint.com