Giáo trình Toán cao cấp (Phần 1) - Hoàng Xuân Quảng
Bạn đang xem tài liệu "Giáo trình Toán cao cấp (Phần 1) - Hoàng Xuân Quảng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- giao_trinh_toan_cao_cap_phan_1_hoang_xuan_quang.pdf
Nội dung text: Giáo trình Toán cao cấp (Phần 1) - Hoàng Xuân Quảng
- Ban Giám Hiệu Toán Cao Cấp Tác giả: Ths. Hoàng Xuân Quảng
- Lời nói đầu Giáo trình này được biên soạn trung thành với chương trình Toán Cao Cấp cho khối ngành đại học kinh tế (Toán Cao Cấp C) của Bộ Giáo Dục và Đào Tạo ban hành năm 1995. Tuy nhiên trong giáo trình có sự sắp xếp lại một vài chương, tiết để phù hợp với thực tế giảng dạy. Giáo trình này đã có bổ sung một số ứng dụng của toán học trong kinh tế theo chương trình hiện hành của một số trường, đặc biệt là Trường Đại Học Kinh Tế TP Hồ Chí Minh. Giáo trình gồm hai phần: • Giải tích toán học (60 tiết) • Đại số tuyến tính (45 tiết) Cuối mỗi chương đều có phần bài tập với số lượng và nội dung phong phú. Các bài tập có hướng dẫn hoặc đáp án. Do vậy, giáo trình là một tà liệu vừa đủ cả về lý thuyết và bài tập của môn Toán Cao Cấp để sinh viên các ngành kinh tế nghiên cứu, học tập. Giáo trình cũng có ích cho những người bước đầu học toán cao cấp hoặc ôn tập về toán cao cấp. Chúng tôi kính mong và rất biết ơn sự góp ý phê bình của bạn đọc. Tp. Hồ Chí Minh - Tp. Long Xuyên, tháng 8 năm 2000 Các tác giả
- Chương I. Định thức Định nghĩa và tính chất 1. Hoán vị và nghịch thế Xét tập n số tự nhiên đầu tiên {1, 2, 3 , n} Một cách sắp xếp có thứ tự các số này sẽ được gọi là một hoán vị từ n số đã cho. Ta đã biết số các hoán vị khác nhau từ n phần tử đã cho là: n! = 1.2.3 n Ví vụ: Tập {1, 2, 3} có 3! = 6 hoán vị là p1 = (1,2,3); p2 = (1,3,2); p3 = (2,1,3); p4 = (2,3,1); p5 = (3,1,2); p6 = (3,2,1); Trong một hoán vị, mỗi cặp số có số lớn đứng trước số bé gọi là một nghịch thế của hoán vị đó. Số nghịch thế của hoán vị p được ký hiệu là N(p). Ví dụ: Với các phép thế trong ví dụ trên, ta có: N(p1) = 0 N(p2) = N(p3) = 1 N(p4) = N(p5) = 2 N(p6) = 3. 2. Định thức cấp n Cho A là một ma trận vuông cấp n, tức là một bảng gồm n x n số được sắp thành n dòng, n cột. Ta gọi định thức A là số (1)
- trong đó tổng lấy theo tất cả các hoán vị p = (α1, α2, α3, , αn) từ n phần tử 1, 2, , n. Khi A có cấp n thì định thức của A gọi là một định thức cấp n. 3. Định thức cấp 2 và cấp 3 Khi n = 2, tổng (1) có dạng Vì N(1,2) = 0, N(2,1) = 1 nên ta có: (2) Như vậy: Định thức cấp 2 bằng tích các số trên đường chéo chính trừ tích các số trên đường chéo phụ. Khi n = 3, tổng (1) có dạng: tổng lấy theo 6 hoán vị (α1, α2, α3) từ ba số 1, 2, 3. Dựa vào số nghịch thế đã xét trong ví dụ trên, ta có (3) Để nhớ công thức (3) người ta thường dùng “qui tắc Sarrus” Dấu (+) Dấu (-) Ví dụ:
- = - 3 - 4 - (1 - 6) = -2 4. Tính chất của định thức 1. Nếu đổi dòng thành cột, cột thành dòng thì định thức không thay đổi. Theo tính chất (i), một tính chất của định thức đúng với dòng thì cũng đúng với cột, do đó các tính chất tiếp theo ta chỉ phát biểu đối với dòng nhưng nó cũng dùng đối với cột. 1. Nếu nhân tất cả các phần tử của một dòng với số λ thì định thức được nhân lên với λ. 2. Nếu một dòng của định thức được viết thành tổng của hai dòng thì định thức được viết thành tổng của hai định thức có dòng đang xét là những dòng thành phần. Ví dụ: 1. Nếu đổi chỗ hai dòng cho nhau thì định thức đổi dấu. 2. Trong một định thức nếu có hai dòng giống nhau thì định thức bằng 0. 3. Nếu cộng một dòng vào một dòng khác đã nhân với một số thì định thức không đổi. Ở đây nhân một dòng với một số nghĩa là tất cả các phần tử của dòng được nhân với số đó, cộng hai dòng với nhau nghĩa là cộng các phần tử tương ứng với nhau. Phương pháp tính định thức Định thức cấp hai và cấp ba có thể tính theo công thức (2) và (3). Định thức cấp cao có thể đưa về định thức cấp hai hoặc ba nhờ công thức khai triển. Một số định thức đặc biệt có thể sử dụng định lý Laplace. Ví dụ: a) Tính
- Ta có: (cộng các dòng vào dòng 1) (đưa thừa số chung [x+3] ra ngoài định thức) (nhân dòng 1 với -1 cộng vào các dòng khác) = b) Tính định thức Vandermonde cấp 3: Ta có: Tương tự, định thức Vandermonde cấp 4:
- Chương II. Ma trận Định nghĩa 1. Định nghĩa ma trận Một ma trận cấp m x n là một bảng gồm m x n số được sắp thành m dòng, n cột theo một thứ tự nhất định. Ma trận A cấp m x n được viết dưới dạng aij là phần tử nằm trên dòng i, cột j của ma trận A. Ta cũng ký hiệu (A)ij là phần tử nằm ở dòng i, cột j của ma trận A. Ví dụ: thì (A)11 = 1, (A)12 = -2, (A)23 = 0 Hai ma trận A và B cấp m x n được gọi là bằng nhau nếu (A)ij = (B)ij với mọi i = 1, , m, j = 1, , n. 2. Phép cộng ma trận và phép nhân số với ma trận Cho A và B là hai ma trận m x n. Khi đó tổng của A và B là ma trận có cấp m x n xác định bởi: (A + B)ij = (A)ij + (B)ij với i = 1, , m, j = 1, , n Như vậy tổng của hai ma trận là ma trận có các phần tử bằng tổng các phần tử tương ứng của hai ma trận đã cho. Cho ma trận A cấp m x n và số (A)ij. Khi đó ta gọi tích của A và λ là ma trận λA có cấp m x n xác định bởi: (λ A)ij = λ(A)ij với i = 1, , m, j = 1, , n Như vậy muốn nhân một số với một ma trận, ta nhân số đó với tất cả các phần tử của ma trận đó. Ví dụ: Cho Ta có
- Ta gọi ma trận không cấp m x n, ký hiệu: 0 = 0m x n là ma trận cấp m x n có tất cả phần tử đều bằng 0. Ta có định lý sau: Định lý 1: Cho A, B, C là các ma trận cấp m x n, λ, µ là các số. Khi đó: 1. A + (B + C) = (A + B) + C; 2. A + B = B + A; 3. A + 0 = A; 4. A + (-1)A = 0; 5. 1.A = A; 6. (λ +µ)A = λ A + µA; 7. λ (A + B) = λ A + λ B; 8. (λµ)A = λ (µA). Sau này ta sẽ viết (-1)A = -A; A + (-B) = A – B và gọi A – B là A trừ B. 3. Phép nhân ma trận Cho ma trận A cấp m x n, ma trận B cấp m x p xác định bởi: Như vậy: • Để tích AB xác định thì số cột của A phải bằng số dòng của B. • Phần tử (AB)ij bằng tổng các tích tương ứng của các phần tử nằm trên dòng i của A và cột j của B. Ví dụ: Ma trận vuông cấp n được gọi là ma trận đơn vị cấp n, ký hiệu I = In, nếu: Như vậy ma trận đơn vị cấp n là ma trận vuông cấp n có các phần tử trên đường chéo chính bằng 1, còn các phần tử còn lại bằng 0. Ví dụ:
- Định lý 2: 1. Cho ma trận A cấp m x n. Khi đó 1. Cho ma trận A cấp m x n, B cấp n x p, C cấp p x q. Khi đó A(BC) = (AB)C 2. Cho ma trận A cấp m x n, B cấp n x p, và số λ. Khi đó: (λ A)B = A(λ B) = λ (AB) 3. Cho ma trận A cấp m x n, B, C có cấp n x p. Khi đó: A (B + C) = AB + AC 4. Cho ma trận A, B cấp m x n, C cấp n x p. Khi đó: (A + B)C = AC + BC 4. Phép chuyển vị Cho ma trận A cấp m x n. Khi đó ma trận chuyển vị của A là ma trận AT có cấp n x m xác định bởi. (AT)ij = (A)ji với i = 1, , m, j = 1, , n Như vậy ma trận chuyển vị của A là ma trận nhận được từ A bằng cách đổi dòng thành cột, đổi cột thành dòng. Theo tính chất của định thức, ta có: det A = det AT nếu A là ma trận vuông. Định lý sau đây cho ta một số tính chất khác. Định lý 3: 1. Với mọi ma trận A ta có: (AT)T = A; 2. Với mọi ma trận A và B cùng cấp ta có: (A + B)T = AT + BT 3. Với mọi ma trận A cấp m x n, B cấp n x p ta có: (AB)T = BT AT Ma trận vuông 1. Vài nhận xét a) Nếu A và B là các ma trận vuông cấp n thì các tích AB và BA cũng là ma trận vuông cấp n, tuy nhiên nói chung AB ≠ BA. Ví dụ: thì b) Có các ma trận A và B cấp n sao cho A ≠ 0, B ≠ 0 nhưng AB = BA = 0 Ví dụ: Ta có
- c) Trong tập hợp ma trận vuông cấp n có các phép toán cộng, nhân với số và nhân. Phép nhân có phần tử đơn vị I = In. Với nó: AI = IA = A Với mọi ma trận vuông A cấp n. Ma trận I giống như số 1 trong phép nhân số. d) Nếu A, B là các ma trận vuông cùng cấp thì ta có det(AB) = detA.detB 2. Ma trận đảo Ma trận vuông A cấp n được gọi là khả đảo nếu tồn tại ma trận B cấp n sao cho AB = BA = I (1) Ma trận B thỏa mãn (1) nếu có là duy nhất. Thật vậy, nếu ma trận B’ cũng thỏa mãn: AB’ = B’A = I, thì B’ = B’I = B’(AB) = (B’A)B = IB = B Ma trận B thỏa mãn (1) gọi là ma trận đảo của A, ký hiệu là A-1. Như vậy ma trận đảo của ma trận A nếu có là duy nhất và AA-1 = A-1A = I Định lý 4: Nếu A và B là các ma trận khả đảo cấp n thì: 1. (A-1)-1 = A 2. (AT)-1 = (A-1)T 3. (AB)-1 = B-1.A-1 4. det (A) . det (A-1) = 1 Ma trận đảo tìm được theo định lý sau đây: Định lý 5: 1. Ma trận vuông A khả đảo ↔ det A ≠ 0 2. Nếu A khả đảo thì (2) Trong định lý này ta ký hiệu là chuyển vị của ma trận có các phần tử là phần phụ của đại số của phần tử tương ứng của ma trận A.
- Ma trận vuông A có det A ≠ 0 còn gọi là không suy biến. Ví dụ: a) Theo công thức (2), nếu ad – bc ≠ 0 thì b) Ta có det A = 6 ≠ 0 nên A khả đảo. Ngoài ra A11 = 4, A21 = -3, A31 = -5 A12 = 0, A22 = 3, A32 = 3 A13 = 2, A23 = 3, A33 = -1 Do đó theo (2) Hạng của ma trận 1. Định nghĩa hạng của ma trận Cho ma trận A cấp m x n. Nếu chọn các phần tử nằm trên k dòng, k cột của A thì ta được một ma trận vuông con cấp k của A. Định thức của ma trận này gọi là một định thức con cấp k của A. Ta gọi hạng của ma trận A, ký hiệu rank A, là cấp cao nhất trong các định thức con khác không của ma trận A. Từ định nghĩa ta có: rank A ≤ min (m,n) 2. Cách tìm hạng • Nếu A = 0 thì rank A = 0 • Nếu A ≠ 0 thì rank A ≥ 1. Cố định một phần tử khác không của A và xét tất cả các định thức con cấp 2 của A chứa phần tử này. • Nếu có một định thức khác không thì rank A ≥ 2. Nếu không thì ta kết luận rank A = 1. • Trong trường hợp có một định thức con cấp 2 khác không, ta cố định định thức này và xét tất cả các định thức con cấp ba chứa nó. Nếu có một định thức khác không thì rank A ≥ 3. Nếu không thì ta kết luận rank A = 2. • Tiếp tục như vậy ta tìm được hạng của A. Ví dụ:
- a) Tìm hạng của ma trận: Ta có nên rank A ≥ 2. Hai định thức con cấp 3 chứa định thức cấp 2 nói trên là. Như vậy rank A ≥ 3, nhưng ma trận có 3 dòng nên rank A ≤ 3, từ đó rank A = 3. b) Tìm hạng của ma trận Ta có det A = 0 do đó rank A j và (A)ik với mọi k ≤ j thì (A)i+1,k = 0 với mọi k ≤ j + 1. Trong đó i = 1, 2, , m – 1; j = 1, 2 , n –1
- Nếu dùng các phép biến đổi sơ cấp đưa ma trận về dạng bậc thang thì số dòng khác không của ma trận dạng bậc thang chính là hạng của A, vì đó cũng chính là cấp cao nhất của định thức con khác không của ma trận A. Ví dụ: a) Tìm hạng của Ta có: b) 4. Tìm ma trận đảo nhờ phép biến đổi sơ cấp Mỗi phép biến đổi sơ cấp trên ma trận đơn vị I cấp n cho ta một ma trận gọi là ma trận sơ cấp ứng với phép biến đổi sơ cấp đã cho. Cho ma trận vuông A cấp n. Ta nhận xét rằng nếu phép biến đổi sơ cấp trên dòng của A có ma trận sơ cấp tương ứng là T thì ma trận nhận được phép biến đổi sơ cấp là T.A. Từ đó, nếu T1, T2, , Tk là dãy các ma trận sơ cấp ứng với các phép biến đổi sơ cấp trên dòng đưa ma trận A thành ma trận đơn vị I thì Tk Tk-1 T1.A = I Từ đó -1 A = Tk Tk-1 T1= Tk Tk-1, T1I Do vậy ta có Định lý 6: Các phép biến đổi sơ cấp đưa A thành ma trận đơn vị cũng chính là các phép biến đổi sơ cấp đưa ma trận đơn vị thành A-1. Theo định lý 6 ta có thể tìm ma trận đảo của A bằng phương pháp biến đổi sơ cấp như sau: • Ghép A với ma trận đơn vị I thành ma trận cấp n x (2n). Dùng các phép biến đổi sơ cấp trên các dòng của ma trận này đưa n cột đầu thành ma trận đơn vị I thì n cột cuối thành ma trận A-1.