Giáo trình Toán cao cấp B2

pdf 51 trang ngocly 2541
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Toán cao cấp B2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_toan_cao_cap_b2.pdf

Nội dung text: Giáo trình Toán cao cấp B2

  1. Giáo trình Toán cao cấp B2
  2. . . ˆ ´. Chuong 1. MA TRA. N-D- I.NH THUC (8+4) I. Ma trˆa.n . . . * Cho m, n nguyˆenduong. Ta go.i ma trˆa.nc˜o m × n l`amˆo.tba’ng sˆo´ gˆo`m m × n . . . . sˆo´ thu. cd¯uo. cviˆe´t th`anh m h`ang, n cˆo.t c´oda.ng nhu sau:  a1,1 a1,2 a1,n  a2,1 a2,2 a2,n (ai,j )m×n =     am,1 am,2 am,n . trong d¯´oc´acsˆo´ thu. c ai,j ,i= 1,m,j = 1,n . . . d¯ u o. cgo.il`ac´acphˆa` ntu’ cu’a ma trˆa.n,chı’ sˆo´ i chı’ h`angv`achı’ sˆo´ j chı’ cˆo.tcu’a . phˆa`ntu’ ma trˆa.n. . . . . . . * Ma trˆa.nc˜o1 × n d¯ u o. cgo.il`ama trˆa.n h`ang, ma trˆa.nc˜om × 1d¯uo. cgo.il`ama . . . trˆa.ncˆo.t, ma trˆa.nc˜on × n d¯ u o. cgo.il`ama trˆa.n vuˆongcˆa´p n. . . . *Trˆen ma trˆa.n vuˆongcˆa´p n,d¯u`ong ch´eo gˆo`m c´acphˆa`ntu’ ai,i,i= 1,n . . . . . . . d¯ u o. cgo.il`ad¯ u `o ng ch´eoch´ınh,d¯u`ong ch´eo gˆo`m c´acphˆa`ntu’ ai,n+1−i,i= 1,n . . . . d¯ u o. cgo.il`ad¯ u `o ng ch´eophu. cu’a ma trˆa.n. . . . * Ma trˆa.n vuˆongcˆa´p n c´oc´acphˆa`ntu’ n˘a`m ngo`aid¯u`ong ch´eo ch´ınh d¯ˆ`eub˘a`ng 0, ngh˜ıal`a: ai,j =0, ∀i =6 j . . d¯ u o. cgo.il`ama trˆa.n ch´eo. * Ma trˆa.n ch´eo c´o ai,i =1,i= 1,n . . . d¯ u o. cgo.il`ama trˆa.nd¯onvi. cˆa´p n,k´yhiˆe.u In. . * Ma trˆa.nc˜om × n c´o ai,j =0, ∀i, j : i>j . . d¯ u o. cgo.il`ama trˆa.nbˆa.c thang. . . . . * Ma trˆa.nc˜om × n c´oc´acphˆa`ntu’ d¯` ˆe ub˘a`ng 0 d¯uo. cgo.il`ama trˆa.n khˆong,k´y hiˆe.u0m,n. *Tago.i ma trˆa.n chuyˆe’nvi.  a1,1 a2,1 am,1  T a1,2 a2,2 am,2 A =(aj,i)n×m =     a1,n a2,n am,n Typeset by AMS-TEX
  3. 2 cu’a ma trˆa.n  a1,1 a1,2 a1,n  a2,1 a2,2 a2,n A =(ai,j )m×n =     am,1 am,2 am,n . . . l`ama trˆa.n c´od¯uo. ct`uA b˘a`ng c´ach chuyˆe’n h`angth`anhcˆo.t, cˆo.t th`anhh`ang. . . . * Hai ma trˆa.nc`ung c˜o (ai,j )m×n v`a(bi,j )m×n d¯ u o. cgo.il`ab˘a`ng nhau nˆe´u c´acphˆa`n . . . tu’ o’ t`ung vi. tr´ıd¯ˆ`eub˘a`ng nhau: ai,j = bi,j , ∀i = 1,m,∀j = 1,n. . . +Tˆo’ng (hiˆe.u) cu’a hai ma trˆa.n c`ungc˜o m × n l`amˆo.t ma trˆa.nc˜om × n, trong d¯´o . . . . . . phˆa`ntu’ cu’a ma trˆa.ntˆo’ng (hiˆe.u) l`atˆo’ng (hiˆe.u) c´acphˆa`ntu’ o’ vi. tr´ıtuong ´ung: (ci,j)m×n =(ai,j )m×n ± (bi,j )m×n v´o.i ci,j = ai,j ± bi,j , ∀i = 1,m,∀j = 1,n. . . . . . . +T´ıch vˆohu´ong cu’asˆo´ thu. c α v´oi ma trˆa.nc˜om × n l`ama trˆa.nc˜om × n, trong d¯´o . . . . . . . mˆo˜i phˆa`ntu’ l`at´ıch cu’a α v´oi phˆa`ntu’ o’ vi. tr´ıtuong ´ung cu’a ma trˆa.n ban d¯ˆa`u: (ci,j )m×n = α.(ai,j )m×n v´o.i ci,j = α.bi,j , ∀i = 1,m,∀j = 1,n. . . . +T´ıch vˆohu´ong c´ot´ınhphˆanbˆo´ v´oi ph´epcˆo.ng c´acma trˆa.n: α.(A+B)=α.A+α.B, . . v´oi ph´epcˆo.ng c´achˆe. sˆo´:(α + β).A = α.A + β.B, c´ot´ınhkˆe´tho. p: α.(β · A)=(α.β) · A. +T´ıch cu’a hai ma trˆa.n A =(ai,j )m×n v`a B =(bj,k)n×q l`ama trˆa.n C = A × B =(ci,k)m×q , v´o.i n ci,k = Xai,j bj,k, ∀i = 1,m,∀k = 1,q. j=1 V´ıdu  132  13  1.1+3.1+2.31.3 − 3.1+2.2   10 4  247 × 1 −1 = 2.1+4.1+7.32.3 − 4.1+7.2 = 27 16  356  32  3.1+5.1+6.33.3 − 5.1+6.2   26 16 
  4. 3 . +Ph´ep nhˆanhai ma trˆa.n c´ot´ınhkˆe´tho. p: A × (B × C)=(A × B) × C, t´ınhphˆan . phˆo´id¯ˆo´iv´oi ph´epcˆo.ng: A × (B + C)=A × B + A × C;(A + B) × C = A × C + B × C. Ngo`aira, nˆe´u A c´oc˜o. m × n,th`ı A × In = Im × A = A. . II. D- .inh th´uc * Cho E = {1, 2, 3, ,n}.Tago.i ho´anvi. cu’atˆa.p E l`amˆo.t song ´anh f : E → E, k´yhiˆe.u 12 n f :   f(1) f(2) f(n) hay (f(1),f(2), ,f(n)) (c´otˆa´tca’ n! ho´anvi. kh´acnhau). . V´ıdu Cho E = {1, 2, 3}. Anh´ xa. f : E → E x´acd¯i.nh bo’ i: f(1) = 1,f(2) = 3,f(3) = 2 l`amˆo.t ho´anvi. cu’a E,k´yhiˆe.ul`a  123 132 ho˘a.c (1, 3, 2). * Cho mˆo.t ho´anvi. 12 n f :   f(1) f(2) f(n) . . ta th`anhlˆa.p c´acc˘a.pth´utu. (f(i),f(j)), ∀i =6 j, 2 . . . . . s˜ec´oCn c˘a.pth´utu. nhu thˆe´;mˆo.tc˘a.p(f(i),f(j)) d¯uo. cgo.il`anghi.ch thˆe´ nˆe´u (i − j)(f(i) − f(j)) < 0. 2 . . Go.i N(f) l`asˆo´ c´acnghi.ch thˆe´ cu’a ho´anvi. f (c´otrong Cn c˘a.pth´utu. trˆen). V´ıdu T`ım sˆo´ nghi.ch thˆe´ cu’a ho´anvi. 12345 f :   . 32154
  5. 4 . . . T`u ho´anvi. n`ay, ta c´oc´acc˘a.pth´utu. (3, 2), (3, 1), (3, 5), (3, 4), (2, 1), (2, 5), (2, 4), (1, 5), (1, 4), (5, 4), trong d¯´ota c´oc´acnghi.ch thˆe´: (3, 2), (3, 1), (2, 1), (5, 4), suy ra N(f)=4 - . . . * Cho ma trˆa.n(A)n,n. D.inh th´uccu’a A l`amˆo.tsˆo´ thu. c, k´yhiˆe.u v`ax´acd¯i.nh nhu sau: N(f) det(A)= X (−1) a1,f(1)a2,f(2) an,f(n) f∈Sn . . trong d¯´o Sn l`atˆa.ptˆa´tca’ n! ho`anvi. cu’a n phˆa`ntu’ {1, 2, ,n}.Nhuvˆa.y, d¯i.nh . th´uccu’a ma trˆa.n A l`amˆo.tsˆo´: . +b˘a`ng tˆo’ng d¯a.isˆo´ cu’a n!ha.ng tu’ da.ng a1,f(1)a2,f(2) an,f(n) . . +mˆo˜iha.ng tu’ l`at´ıch cu’a n phˆa`ntu’ ai,j m`amˆo˜i h`ang,mˆo˜icˆo.t pha’ic´omˆo.t . v`achı’ mˆo.t phˆa`ntu’ tham gia v`aot´ıch d¯´o. . . . . +dˆa´ucu’amˆo˜iha.ng tu’ phu. thuˆo.c v`aosˆo´ nghi.ch thˆe´ cu’a ho´anvi. tuong ´ung. . . . . . *Tago.i d¯ i .nh th´uccˆa´p2l`agi´atri. t´ınhd¯uo. ct`uba’ng 2 h`ang,2 cˆo.tnhusau: a1,1 a1,2 = a1,1a2,2 − a2,1a1,2 a2,1 a2,2 . . . . . *Tago.i d¯ i .nh th´uccˆa´p3l`agi´atri. t´ınhd¯uo. ct`uba’ng 3 h`ang,3 cˆo.tnhusau: a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 = a1,1a2,2a3,3 + a2,1a3,2a1,3 + a3,1a1,2a2,3 a a a 3,1 3,2 3,3 − a3,1a2,2a1,3 − a2,1a1,2a3,3 − a1,1a3,2a2,3 . . . +D- ˆe ’ t´ınhnhanh d¯i.nh th´uccˆa´p 3, ta viˆe´tcˆo.tth´unhˆa´t v`ath´u hai tiˆe´p theo v`aobˆen pha’iba’ng n´oitrˆen: a1,1 a1,2 a1,3 a1,1 a1,2 a2,1 a2,2 a2,3 a2,1 a2,2 a3,1 a3,2 a3,3 a3,1 a3,2 . . . . th`ı3 phˆa`ntu’ lˆa´ydˆa´ucˆo.ng l`at´ıch c´acphˆa`ntu’ n˘a`m trˆenc´acd¯u`ong ch´eo song song v´o.id¯u.`o.ng ch´eo ch´ınh, ba phˆa`ntu’. lˆa´ydˆa´utr`u. l`at´ıch c´acphˆa`ntu’. n˘a`m trˆenc´ac . . . . . d¯ u `ong ch´eo song song v´oid¯u`ong ch´eo phu. (quy t˘a´c Serrhus)
  6. 5 . . . . *Tago.i d¯ i .nh th´uccˆa´p n l`agi´atri. t´ınhd¯uo. ct`uba’ng: a1,1 a1,2 a1,n a2,1 a2,2 a2,n n+1 = a1,1D1 − a2,1D2 + ···+(−1) an,1Dn an,1 an,2 an,n . . . . trong d¯´o Dk l`ad¯i.nh th´uccˆa´p n − 1thud¯uo. ct`uba’ng d¯˜acho b˘a`ng c´ach bo’ cˆo.t th´u. nhˆa´t v`ah`angth´u. k, k = 1,n. V´ıdu 1452 331 452 452 452 0331 =1. 040 − 0. 040 +2. 331 − 0. 331 =14 2040 021 021 021 040 0021 . +D- .inh th´uc khˆongthay d¯ˆo’inˆe´u ta d¯ˆo’i h`angth`anhcˆo.t . . +D- .inh th´ucd¯ˆo’idˆa´unˆe´u ta d¯ˆo’ichˆo˜ hai h`ang(ho˘a.c hai cˆo.t) v´oi nhau . . +D- .inh th´uc c´ohai h`ang(ho˘a.c hai cˆo.t) ty’ lˆe. v´oi nhau nhau th`ıb˘a`ng 0 . . . +Th`uasˆo´ chung cu’amˆo.t h`anghay cˆo.tc´othˆe’ d¯ u a ra ngo`aidˆa´ucu’ad¯i.nh th´uc . . . +D- .inh th´uc khˆongthay d¯ˆo’inˆe´u ta d¯ˆo`ng th`oicˆo.ng v`aoc´acphˆa`ntu’ cu’amˆo.t h`ang . . (hay mˆo.tcˆo.t) n`aod¯´oc´acphˆa`ntu’ cu’amˆo.t h`ang(hay mˆo.tcˆo.t) kh´acnhˆanv´oic`ung mˆo.tsˆo´. . . V´ıdu Gia’iphuong tr`ınh: 11 1 1 11− x 1 1 112− x 1 =0. 11 1 n− x . . . . . D- .inh th´uco’ vˆe´ tr´aicu’aphuong tr`ınhl`ad¯ath´ucbˆa.c n nˆenc´okhˆongqu´a n nghiˆe.m . kh´acnhau. Thay x =0,x =1,x =2, ,x = n − 1 v`aod¯i.nh th´uc, ta luˆonc´ohai . . . . . h`angv´oi c´acphˆa`ntu’ b˘a`ng 1, nˆen d¯i.nh th´ucb˘a`ng 0. Vˆa.yphuong tr`ınhc´o n nghiˆe.m x =0,x=1,x=2, ,x = n − 1. . . *D- .inh th´uccu’a ma trˆa.n vuˆong A =(ai,j )n×n,k´yhiˆe.u det(A) l`ad¯i.nh th´uccˆa´p n cu’aba’ng a1,1 a1,2 a1,n a2,1 a2,2 a2,n an,1 an,2 an,n v`ac´ot´ınhchˆa´t: + det(αA)=αn. det(A) + det(A × B) = det(A). det(B) III. Ma trˆa.n nghi.ch d¯a’o
  7. 6 . . −1 * Ma trˆa.n A =(ai,j )n×n d¯ u o. cgo.il`ama trˆa.n kha’ nghi.ch nˆe´utˆo`nta.i ma trˆa.n A sao cho: −1 −1 A × A = A × A = In. −1 . . Khi d¯´o,ma trˆa.n A d¯ u o. cgo.il`ama trˆa.n nghi.ch d¯a’o cu’a A. + Ma trˆa.n A kha’ nghi.ch khi v`achı’ khi det A =06 . . * Cho A =(ai,j )m×n.Mˆo.t d¯ i .nh th´uc con cˆa´p k (1 ≤ k ≤ n) cu’a A l`amˆo.td¯i.nh . . th´ucta.o th`anht`u ma trˆa.n A b˘a`ng c´ach bo’ d¯ i m − k h`angv`a n − k cˆo.t. * Cho ma trˆa.n vuˆongcˆa´p n kha’ nghi.ch  a1,1 a1,2 a1,n  a2,1 a2,2 a2,n A =     an,1 an,2 an,n . i+j Phˆa` nb`ud¯a.isˆo´ cu’a phˆa`ntu’ ai,j ,l`asˆo´ Ai,j =(−1) Di,j trong d¯´o Di,j l`ad¯i.nh . . . . . th´uccˆa´p n − 1cu’aba’ng thu d¯uo. ct`uma trˆa.n A b˘a`ng c´ach ga.ch bo’ h`angth´u i v`a . cˆo.tth´uj. + Cho A l`ama trˆa.n vuˆongkha’ nghi.ch cˆa´p n v`a∆ = det A =6 0. Khi d¯´oma trˆa.n . . . nghi.ch d¯a’ocu’a A d¯ u o. c x´acd¯i.nh mˆo.t c´ach duy nhˆa´tbo’ i: −1 1 T A = Ai,j  ∆  A1,1 A2,1 Dn,1  1 A A D =  1,2 2,2 n,2  ∆     A1,n A2,n Dn,n V´ıdu Ma trˆa.n nghi.ch d¯a’ocu’a  1 −11 A = 211  112 l`a: 13−2 1   A−1 = −31 1 5  1 −23 v`ı: ∆ = det A = (1)(1)(2)+(2)(1)(1)+(1)(−1)(1)−(1)(1)(1)−(2)(−1)(2)−(1)(1)(1) = 5 =06
  8. 7 v`a: 11 21 21 A =(−1)1+1 =1;A =(−1)1+2 = −3; A =(−1)1+3 =1; 1,1 12 1,2 12 1,3 11 2+1 −11 2+2 11 2+3 1 −1 A2,1 =(−1) =3;A2,2 =(−1) =1;A2,3 =(−1) = −2 12 12 11 −11 11 1 −1 A =(−1)3+1 = −2; A =(−1)3+2 =1;A =(−1)3+3 =3 3,1 11 3,2 21 3,3 21 +T´ınh chˆa´t: 1 − Cho A kha’ d¯ a’ov`ak =6 0, th`ı:(kA)−1 = A−1 k − Cho A, B c`ung cˆa´p v`akha’ d¯ a’o, th`ı:(A × B)−1 = B−1 × A−1 −1 − Cho A kha’ d¯ a’oth`ıA−1 c˜ung kha’ d¯ a’ov`aA−1 = A Phˆa`n I.4: Ha.ng cu’a ma trˆa.n *Tago.i ha.ng cu’a ma trˆa.n A =(ai,j )m×n,k´yhiˆe.u r(A) l`acˆa´p cao nhˆa´tcu’a c´ac . d¯ i .nh th´uc con kh´ac0 cu’a A. . +Ha.ng cu’a ma trˆa.n0m×n l`a0, ha.ng cu’a ma trˆa.n A =(a)v´oi a =6 0 l`a1. . +Ha.ng cu’a ma trˆa.n khˆongthay d¯ˆo’i qua c´acph´epbiˆe´nd¯ˆo’iso cˆa´p sau d¯ˆay: a. D- ˆo’ichˆo˜ hai h`angho˘a.c hai cˆo.t cho nhau; . b. Nhˆanmˆo.t h`ang(hay mˆo.tcˆo.t) v´oimˆo.tsˆo´ kh´ac0; . c. Cˆo.ng v`aomˆo.t h`ang(hay mˆo.tcˆo.t) v´oimˆo.t h`ang(hay mˆo.tcˆo.t) kh´acnhˆan . v´oimˆo.tsˆo´. . . D- ˆe ’ t`ımha.ng cu’a ma trˆa.n Amtimesn, c´othˆe’ d`ungc´acphuong ph´apsau: . . . . . + Phuo ng ph´aptheo d¯i.nh ngh˜ıa: t´ınhc´acd¯i.nh th´uc con t`u cˆa´p 2 tro’ lˆen.Gia’ . . . su’ ma trˆa.nc´o1d¯i.nh th´uc con cˆa´p r kh´ac0, t´ınhtiˆe´p c´acd¯i.nh th´uccˆa´p r +1,nˆe´u . tˆa´tca’ d¯` ˆe ub˘a`ng 0 th`ıkˆe´t luˆa.nha.ng ma trˆa.nl`ar,nˆe´uc´od¯i.nh th´uccˆa´p r + 1 kh´ac . . . . . 0 th`ıt´ınhtiˆe´p c´acd¯i.nh th´uccˆa´p r +2,c´u nhu thˆe´ d¯ ˆe´nd¯i.nh th´uccˆa´pl´on nhˆa´t V´ıdu T`ım ha.ng cu’a ma trˆa.n  1235 A = 3249  1014 12 Ta c´od¯inh th´u.c con cˆa´p2: = −4 =6 0, v`ac´acd¯inh th´u.ccˆa´p3: . 32 . 123 125 135 235 324 =0; 329 =0; 349 =0; 249 =0 101 104 114 014 suy ra r(A)=2
  9. 8 . . . + Phuo ng ph´apd`ungph´epbiˆe´nd¯ˆo’iso cˆa´p: biˆe´nd¯ˆo’i ma trˆa.nvˆ`e da.ng bˆa.c thang  b1,1 b1,2 b1,r b1,n  0 b2,2 b2,r b2,n     B =    00 br,r br,n     00 0 0  00 0 0 . v´oi bi,j =0, ∀i>jhay i>rv`a bii =06 ,i= 1,r th`ı r(A)=r(B)=r. V´ıdu T`ım ha.ng ma trˆa.n  13205 269712 A =  − −   2 524 5 148420  1320 5  1320 5 h2−2h1;h3+2h1;h4−h1 0057 2 h4−h3;h2↔h3 016415 A −→   −→    016415  0057 2 016415 0000 0 suy ra r(A)=3 . + Ngo`aira, c´othˆe’ t`ım ma trˆa.n nghi.ch d¯a’o qua c´acph´epbiˆe´nd¯ˆo’iso cˆa´p: . . . . ’ lˆa.p ma trˆa.n khˆo´i A|E (E c`ung c˜o v´oi A, thu. chiˆe.n c´acph´epbiˆe´nd¯ˆo’isocˆa´p CHI . . . TRENˆ HANG,` nˆe´ud¯uad¯uo. cvˆ`e da.ng E|B th`ı B l`anghi.ch d¯a’ocu’a A.  1 −11| 100  1 −11| 100 h2−2h1,h3−h1 V´ıdu A|E = 211| 010 −→ 03−1 |−210  112| 001  02 1|−101  1 −30| 20−1  1  1 −30| 20−1  h1−h3,h2+h3 h2( ) −→ 050|−31 1 −→5 010|−3/51/51/5  021|−10 1  021|−101  100| 1/53/5 −2/5  h1+3h2,h3−2h2 . . . −→ 010|−3/51/51/5 thu d¯uo. ckˆe´t qua’ nhu c˜u.  011| 1/5 −2/53/5  ` ˆ BAI TA. P . . 1.1. Khˆongt´ınh,ch´ung minh c´acd¯i.nh th´uc sau chia hˆe´t cho 17: 204 323 527 ; 20 9 1 255 55 2 5 . . . 1.2. Ch´ung minh c´acd¯˘a’ ng th´uc sau d¯ˆay(khˆongt´ınhd¯i.nh th´ucb˘a`ng d¯i.nh ngh˜ıa):
  10. 9 0 xyz 01 1 1 x 0 zy 10z2 y2 . 6 a. = 2 2 v´oi xyz =0 yz0 x 1 z 0 x 2 2 xyz0 1 y x 0 1 xyz b. 1 yzx =(x − y)(y − z)(z − x) 1 zxy 111 c. xyz =(x + y + z)(x − y)(y − z)(z − x) x3 y3 z3 1.3. T`ım x sao cho: 33− x −x xx+1 x +2 a. 273 =0 b. x +3 x +4 x +5 =0 x +1 3x − 7 x x +6 x +7 x +8 1 xx2 x 12 c. 31 x 0 45 1 x +1 2 −4 x 1111 0110 1 xxx 1 x 111 0011 1 a 00 1.4. T´ınh c´acd¯inh th´u.c sau: ; ; 11x 11 ; . 1001 10b 0 111x 1 1100 100c 1111x 2 3 2 1 xx x a + xx x x +1 xy xz 3 2 2 x x x 1 ab+ xx ; xy y +1 yz ; 2 3 ; 2 12x 3x 4x xxc+ x xz yz z +1 3 2 4x 3x 2x 1 axx−x −x 0 xyz 2 x 1 x x 0 y 0 x 2aa 00 x 0 zy 1 x 2 x 0 z 0 t ; ; ; xa2a 00 ; yz0 x 21xx y 0 z 0 −x 002aa xyz0 xx21 0 t 0 x −x 00 a 2a 12 3 n xaa a 21 2 n− 1 axa a 32 1 n− 2 ; aax a ; nn− 1 n − 2 1 aaaax 011 11 cos(x1 − y1) cos(x1 − y2) cos(x1 − yn) 10x x x cos(x2 − y1) cos(x2 − y2) cos(x2 − yn) 1 x 0 x x ; ; cos(xn − y1) cos(xn − y2) cos(xn − yn) 1 xx 0 x 1 xx x0
  11. 10 a1 −a2 0 00 1+x1y1 1+x1y2 1+x1yn 0 a2 −a3 00 1+x2y1 1+x2y2 1+x2yn 00a3 00 ; 1+xny1 1+xny2 1+xnyn 00 0 an−1 −an 11 1 11+an  212  1 −2  1.5. Cho A = 301 v`a B = 46.T`ım A2,AB,A−1.  012  5 −3  n n n 2 −1 a 1 cos x − sin x 1.6. T`ım c´acma trˆan   ;   ;   . 3 −2 0 a sin x cos x 12 1.7. Cho A =  .T`ım f(A)v´o.i f(x)=x2 − 4x +3,f(x)=x2 − 2x +1. 21 1.8.  211  12−2  a. Cho A = 312v`a B = 23 1 .  1 −10  12 2 1. T`ım A−1,B−1. 2. T`ım f(A),f(B)v´o.i f(x)=x2 − x − 1 −  2100  13 57 3200 01 2 −3 b. T`ım ma trˆa.n nghi.ch d¯a’ocu’a A =  ; B =  .  1134  00 1 2 2 −123 00 0 1 1.9. . . a. T`ım ma trˆa.n vuˆongcˆa´p hai c´ob`ınhphuong b˘a`ng ma trˆa.n khˆong. . . . b. T`ım ma trˆa.n vuˆongcˆa´p hai c´ob`ınhphuong b˘a`ng ma trˆa.nd¯onvi 1.10. T`ım ma trˆa.n X sao cho: 12 35 3 −2 −12   × X =  ; X ×   =  ; 34 59 5 −4 56  12−3   1 −30  11−1   1 −13 32−4 ×X = 10 2 7 ; X× 21 0 = 432;  2 −10  10 7 8   1 −11  1 −25 21 −32 −24   × X ×   =  ; 32 5 −3 3 −1 41 21 50   × X ×   =  ; 3 −1 53 61 111   21−1 105 X × 011 − 2   =  ; 30 6 −1 −21  001  122  35  15 254 × X + 76 =3 −12;  245  21  −20
  12. 11  111 1   123 n  011 1 012 n− 1      001 1  × X =  001 n− 2 .         000 1 000 1 1.11. T`ım ha.ng cu’a ma trˆa.n sau: 2111 2 1112   13205   1311   104−1 269712 ;  1141; ;  11 4 56 −5     −2 −524 5    1115   2 −15−6   148420 1111 12314   31−311 32111 135791     2 −17−32  11 1 6; 1 −23−452;    13−253  23−15  2 11 12 25 22 4      3 −27−53 11 0 3 1.12. Biˆe.n luˆa.n theo a sˆo´ ha.ng cu’a c´acma trˆa.n sau:  −12 1   1 a −12  a 114 2 a −2 ; 2 −1 a 5 ; 1 a 13;  3 −6(a + 3)(a +7)  110−61  12a 14 −  31 1 4  1436  12 132 a 4101 −1011 2 −1 a2 04 ; ;    −     17173  21 10  31 227 22 4 3 02a 4 12 a 11 1.13. T`ım c´acgi´atri. cu’a m d¯ ˆe ’:  34 5 7 1 . 26−34 2 a. r(A)=2v´oi A =    4 2 13 10 0  5 0 21 13 m −  123 11 . 321−11 b. r(A)=3v´oi A =    231 1 1  55202m +1  1436 −10 1 1 c. r(A)=3v´o.i A =  −   21 10 02m 4  3114 . m 4101 d. r(A)=2v´oi A =    17173 2243  m 111 . 11m 1 e. r(A)=2v´oi A =    111m  1 m 11
  13. 12 -ooOoo-
  14. 13 . . ˆ . . ` ˆ´ ´ Chuong 2. HE. PHUONG TRINH TUYENTINH (2+2) I. C´acd¯i.nh ngh˜ıa . . . . *Tago.i hˆe. phuo ng tr`ınh tuyˆe´nt´ınh m phuo ng tr`ınh n ˆa ’n l`ahˆe. c´oda.ng  a1,1x1 + a1,2x2 + ···+ a1,nxn = b1    (1) a2,1x1 + a2,2x2 + ···+ a2,nxn = b2   am,1x1 + am,2x2 + ···+ am,nxn = bm . . trong d¯´o ai,j ,bi (i = 1,m,j = 1,n) l`ac´achˆe. sˆo´ (thu. c ho˘a.cph´uc), x1,x2, ,xn l`ac´ac . . . . . . ˆa’nsˆo´.Hˆe. phuong tr`ınhtuyˆe´n t´ınhd¯uo. cgo.il`ac´onghiˆe.m (hay tuo ng th´ıch)nˆe´u tˆa.p nghiˆe.mcu’a n´okh´acrˆo˜ng. . . . . +Hˆe. (1) c´othˆe’ d¯ u o. cviˆe´tdu´oida.ng ma trˆa.n AX = B trong d¯´o: a a a  1,1 1,2 1,n  x1 b1 a a a+2,n     A = 2,1 2,2 ; X = x2 ; B = b2 hay    .   .    . x . b am,1 am,2 am,n n m  a1,1 a1,2 a1,n b1  . . . a2,1 a2,2 a+2,n b2 du´oida.ng ma trˆa.nmo’ rˆo.ng: A =  , khi d¯´oha.ng   am,1 am,2 am,n bm . . . . r(A)cu’a A d¯ u o. cgo.il`aha.ng cu’ahˆe. phuo ng tr`ınh (1) II. Hˆe. Cramer . . . . . *Hˆe. (1) c´osˆo´ phuong tr`ınh b˘a`ng sˆo´ nghiˆe.m(m = n) v`ad¯i.nh th´uc det(A)=0d¯uo. c go.il`ahˆe. Cramer. D +Hˆe Cramer c´onghiˆem duy nhˆa´td¯u.o.c x´acd¯inh nhu. sau: ∀i = 1,n,x = i , trong . . . . i D . . . . . d¯ ´o D = det(A), c`on Di l`ad¯i.nh th´uc thu d¯uo. ct`uD b˘a`ng c´ach thay cˆo.tth´ui b˘a`ng . cˆo.thˆe. sˆo´ tu. do.  x1 +2x2 +3x3 =6  V´ıdu Gia’ihˆe.: 2x1 − x2 + x3 =2  3x1 + x2 − 2x3 =2 12 3 Do D = 2 −11 =30=0,hˆe6 c´onghiˆem duy nhˆa´t(1, 1, 1): . . 31−2 62 3 16 3 126 1 1 1 x = 2 −11 =1;y = 22 1 =1;z = 2 −12 =1 30 30 30 21−2 32−2 312 III. C´acd¯i.nh l´yvˆe` nghiˆe.mcu’ahˆe. (Kronecker-Kapeli) . . + (1) c´onghiˆe.m (tuong th´ıch) khi v`achı’ khi r(A)=r(A). + (1) c´onghiˆe.m duy nhˆa´t (x´acd¯i.nh) khi v`achı’ khi r(A)=r(A)=n. +nˆe´u r(A)=r(A)=r<nth`ı(1) c´ovˆosˆo´ nghiˆe.m v`ac´acth`anhphˆa`n nhiˆe.m phu. thuˆo.c n − r tham sˆo´ tu`y´y.
  15. 14  ax1 + x2 + x3 =1  V´ıdu Biˆe.n luˆa.n theo a sˆo´ nghiˆe.mcu’ahˆe.: x1 + ax2 + x3 =1  x1 + x2 + ax3 =1 . D`ung c´acph´ep biˆe´nd¯ˆo’isocˆa´pd¯ˆe’ x´acd¯i.nh ha.ng cu’a A v`a A  a 11| 1   11a | 1  ↔ A = 1 a 1 | 1 h−→1 h3 1 a 1 | 1  11a | 1   a 11| 1   11 a | 1   11 a | 1  − h−→2 h1 0 a − 11− a | 0 h−→3+h2 0 a − 11− a | 0 − h3 ah1  01− a 1 − a2 | 1 − a   002− a − a2 | 1 − a  2 . . . +Nˆe´u2− a − a = 0, c´o2 tru`o ng ho. p:  111| 1  a = 1 th`ı: A −→ 000| 0 ⇒ r(A)=r(A)=1< 3, hˆe. c´ovˆosˆo´  000| 0  nghiˆe.m phu. thuˆo.c 2 tham sˆo´ tu`y´y.  11−2 | 1  a = −2 th`ı: A −→ 0 −33| 0 ⇒ r(A)=2<r(A =3,hˆe. vˆo  00 0| 3  nghiˆe.m. +Nˆe´u2− a − a2 =06 ⇔ a =16 ,a=6 −2, th`ı r(A)=r(A)=3,hˆe. c´onghiˆe.m duy nhˆa´t. . . IV. Phuong ph´apgia’ihˆe. . . . . . . . . . + C´acph´epbiˆe´nd¯ˆo’isocˆa´p cho hˆe. tuong d¯uong (tuong ´ung v´oi c´acph´epbiˆe´nd¯ˆo’i . theo h`angcu’a ma trˆa.nmo’ rˆo.ng): . . − D- ˆo’ichˆo˜ hai phuong tr`ınhcho nhau (d¯ˆo’ichˆo˜ hai h`angcu’a ma trˆa.n) . . . . − Nhˆanhai vˆe´ cu’aphuong tr`ınh n`aod¯´ov´oimˆo.tsˆo´ kh´ac0 (nhˆanc´acphˆa`ntu’ . trˆen mˆo.t h`angcu’a ma trˆa.nv´oimˆo.tsˆo´ kh´ac0) . . . . . . . − Cˆo.ng t`ung vˆe´ cu’amˆo.tphuong tr`ınhv´oimˆo.tphuong tr`ınhkh´acnhˆanv´oi . mˆo.tsˆo´ (cˆo.ng mˆo.t h`angv´oibˆo.isˆo´ mˆo.t h`angkh´ac) ´ 1. Ap du.ng d¯i.nh l´y Carmer . . Nˆe´uhˆe. phuong tr`ınhtuyˆe´n t´ınhl`ahˆe. Cramer, c´othˆe’ ´apdu. ng d¯i.nh l´y Carmer − − ho˘a.c t`ımma trˆa.n A 1, suy ra X = A 1B.  2x +3y +2z =9 . .  V´ıdu Gia’ib˘a`ng phuong ph´apma trˆa.n nghi.ch d¯a’o:  x +2y − 3z =14  3x +4y − z =16 23 2 Do det(A)= 12−3 = −6 =0nˆe6 ` hˆe l`aCramer. . 34 1 A A A 14 5 −13 1  1,1 2,1 3,1  1   V´o.i A−1 = A A A = −10 −48 det(A)  1,2 2,2 3,2  −6   A1,3 A2,3 A3,3 −21 1  14 5 −13   9   2   x =2 1  nˆen X = A−1B = − −10 −48 14 = 3 , suy ra  y =3 6  −21 1  16   −2   z = −2.
  16. 15 2. Phu.o.ng ph´apGauss (khu’. dˆa` nˆa’nsˆo´) . . D`ung c´acph´ep biˆe´nd¯ˆo’isocˆa´p theo c´ach`ang,biˆe´nd¯ˆo’i ma trˆa.nmo’ rˆo.ng A th`anh . . ma trˆa.n A1 c´onhiˆe` u phˆa`ntu’ 0 (nhu ma trˆa.nbˆa.c thang), khi d¯´o r(A)=r(A1)v`a r(A)=r(A1). +nˆe´u r(A1) <r(A1), th`ıhˆe. vˆonghiˆe.m . . . . . . . +nˆe´u r(A1)=r(A1)=r th`ılˆa.phˆe. phuong tr`ınh m´oi (tuong d¯uong hˆe. d¯˜acho) sau . . . kho bo’ c´ach`angm`amo.i phˆa`ntu’ d¯` ˆe ub˘a`ng 0. Gia’ihˆe. n`ay(r phuong tr`ınh, n ˆa ’n . . sˆo´)b˘a`ng c´ach cho.n r ˆa ’ncoba’nv`an − r ˆa ’n khˆongco ba’n (thay b˘a`ng tham sˆo´ tu`y y),´ nˆe´u r = n th`ıhˆe. c´onghiˆe.m duy nhˆa´t. . . V´ıdu Gia’i c´achˆe. phuong tr`ınh sau:  x1 − 3x2 +2x3 = −1   x1 +9x2 +6x3 =3  x1 +3x2 +5x3 =1  1 −32−1   1 −321  1 −32−1  − h ×1/2 A = 1963 h−→2 h1 01244 2−→ 0311, − −  1351 h3 h1  0632 h3 h2  0010 x =0  x1 − 3x2 +2x3 = −1  x1 = −1+3x2 − 2x3  1    1 suy ra  3x2 + x3 =1 ⇒  3x2 =1− x3 ⇒  x = 2 3 x =0 x =0  3  3  x3 =0  x1 − 3x2 +2x3 − x4 =2   2x1 +7x2 − x3 = −1  4x1 + x2 +3x3 − 2x4 =1  1 −32−12  1 −32−12 − − B = 27−10−1 h2−→2h1 013−52−5 h−→3 h2 −  41 3−21 h3 4h1  013−52−7   1 −32−12 013−52−5 = B1.Dor(B)=r(B1)=2< 3=r(B1)=r(B), hˆe.  00 0 0−2  vˆonghiˆe.m.  x1 +5x2 +4x3 +3x4 =1  2x − x +2x − x =0  1 2 3 4 5x1 +3x2 +8x3 + x4 =1   4x1 +9x2 +10x3 +5x4 =2  15 4 31  15431 2 −12−10 h3−h1−2h2 2 −12−10 C =   −→    53 8 11 h4−2h1−h2  00000 491052 00000 h −2h 15 4 3 1 2−→ 1  ,t´u.c l`a: bo’ h3,h4 0 −11 −6 −7 −2
  17. 16  x1 +5x2 +4x3 +3x4 =1 −11x2 − 6x3 − 7x4 = −2. 14 2 1  x1 = − α + β +  11 11 11   6 7 2 Chon x = α, x = β, ta suy ra:  x = − α − β + . 3 4 2 11 11 11  x3 = α   x4 = β  ax + y + z =1  V´ıdu. 2. Gia’i v`abiˆe.n luˆa.n theo a:  x + ay + z = a 2  x + y + az = a  a 11 1  11aa2   11 aa2  ↔ − A = 1 a 1 a h−→3 h1 1 a 1 a h−→2 h1 0 a − 11− aa− a2 −  11aa2   a 11 1 h3 ah1  01− a 1 − a2 1 − a3   11 aa2  h−→3+h2 0 a − 11− aa− a2 , suy ra:  002− a − a2 1+a − a2 − a3  *Nˆe´u2− a − a2 =0⇔ (a =1)∨ (a = −2) . . . . . +Nˆe´u a = 1, th`ı A → (1 1 1 1), tuong d¯uong v´oi x + y + z = 1 nˆenc´ovˆosˆo´ nghiˆe.m . da.ng (1 − α − β; 1; 1) v´oi α, β tu`y´y.  11−24 +Nˆe´u a = −2, th`ı A → 0 −33−6 suy ra r(A)=2< 3=r(A)nˆen hˆe. vˆo  00 0 3,  nghiˆe.m. *Nˆe´u2− a − a2 =06 ⇔ (a =1)6 ∧ (a =6 −2) 2  11 aa h2:a−1 01−1 −a . . . . A −→ 2 , nˆen hˆe. d¯˜acho tuong ´ung v´oi: − − 2  (a +1)  h3:2 a a  00 1  a +2 a +1 2  x1 = −  x + y + az = a  a − 2   y − z = −a  1  ⇔  x2 = (a +1)2 a +2  z =  (a +1)2  a − 2  x =  3 a +2  ax + y + z =1  V´ıdu. 3. Gia’i v`abiˆe.n luˆa.n theo a, b:  x + by + z =3  x +2by + z =4 a 11 411 D = det(A)= 1 b 1 =(1− a)b; Dx = 3 b 1 = −2b +1; 12b 1 42b 1 a 41 a 14 Dy = 131 =1− a; Dz = 1 b 3 =4b − 2ab − 1 141 12b 4
  18. 17  a =16 +Nˆe´u D =(1− a)b =06 ⇔ ,hˆe. l`aCramer, c´onghiˆe.m duy nhˆa´t: b =06  −2b +1 x1 =  (1 − a)b   1  x = 2 b   4b − 2ab − 1  x3 =  (1 − a)b  x + y + z =1  x + y + z =4 .   +Nˆe´u a =1,hˆe. tro’ th`anh:  x + by + z =3 ⇔  (b − 1)y = −1 , th`ı::  x +2by + z =4  (2b − 1)y =0  x =2− α 1 x + y + z =0  − Nˆe´u2b − 1=0⇔ b = :  ⇔  y =2 , α tu`y´y. 2 y =2  z = α  x + y + z =4 1  − Nˆe´u2b−1 =06 ⇔ b =6 :  (b − 1)y = −1 vˆonghiˆemv`ı(b−1)0 = −1 2 .  y =0  ax − y + z =4 .  +Nˆe´u b =0,hˆe. tro’ th`anh:  x + z =3 vˆonghiˆe.m  x + z =4 . . V. Hˆe. phuong tr`ınhtuyˆe´n t´ınhthuˆa` n nhˆa´t . . * Hˆe. phuo ng tr`ınh tuyˆe´nt´ınh thuˆa` n nhˆa´t l`ahˆe. c´oda.ng AX = 0 (II) (B l`ama trˆa.n to`ansˆo´ 0), khi d¯´o r(A)=r(A), hˆe. luˆonluˆonc´onghiˆe.m: . . +nˆe´u r(A)=n,hˆe. c´onghiˆe.m duy nhˆa´t nghiˆe.mtˆa` m thu`o ng x1 = x2 = ··· = xn =0; +nˆe´u r(A) <n,hˆe. c´ovˆosˆo´ nghiˆe.m, c´acth`anhphˆa`ncu’a nghiˆe.m phu. thuˆo.c n − r(A) . . tham sˆo´, nˆenc´onghiˆe.m kh´acnghiˆe.m khˆong(nghiˆe.m khˆongtˆa` m thu`o ng). . . . . . +V´oihˆe. c´o n phuong tr`ınh, n ˆa ’nsˆo´,hˆe. c´onghiˆe.m khˆongtˆa`mthuong khi v`achı’ khi . . det(A) =6 0 v`ac´onghiˆe.m duy nhˆa´ttˆa`mthuong khi v`achı’ khi det(A)=0.  ax1 + x2 + ···+ xn−1 + xn =0   x1 + ax2 + ···+ xn−1 + xn =0  V´ıdu T`ım a d¯ ˆe ’ hˆe.  =0 c´onghiˆe.m khˆongtˆa`m  x1 + x2 + ···+ axn−1 + xn =0   x1 + x2 + ···+ xn−1 + axn =0. thu.o.ng
  19. 18 a 1 11 1 a 11 det(A)= 11 a 1 11 1 a a + n − 1 a + n − 1 a+ n − 1 a + n − 1 1 a 11 h1+P hi = i=1 11 a 1 11 1 a 11 11 1 a 11 =(a + n − 1) 11 a 1 11 1 a 11 11 0 a − 1 00 hi−h1 n−1 = (a + n − 1) =(a + n − 1)(a − 1) i=1 00 a− 10 00 0 a − 1 a =1− n Hˆe c´onghiˆem khˆongtˆa`mthu.`o.ng khi det(A)=0⇔  . . a =1. +nˆe´u (α1; α2; ; αn−1; αn)v`a(β1; β2; ; βn−1; βn) l`anghiˆe.mcu’ahˆe. (II) th`ı ∀h, k ∈ R :(hα1 + kβ1; hα2 + kβ2; ; hαn−1 + kβn−1; hαn + kβn) c˜ung l`anghiˆe.mhˆe. (II). . . . . . . +Tru`ong ho.p r(A) <n(sˆo´ ˆa’ncu’ahˆe.)th`ır(A)ˆa’ncoba’nd¯uo. cbiˆe’udiˆ˜en qua . . n − r(A)ˆa’n khˆongco ba’n (lˆa´y gi´atri. tu`y´y).Nˆe´ucho.n n − r(A)ˆa’n khˆongco ba’n . . . tuong ´ung theo n − r(A) th`anhphˆa`ncu’a n − r(A)bˆo. sˆo´: (1; 0; 0; ; 0); (0; 1; 0; ; 0); (0; 0; 1; ; 0); ; (0; 0; 0; ;1) . . . th`ı n − r(A) nghiˆe.mcu. thˆe’ cu’ahˆe. (II) d¯uo. cgo.il`amˆo.thˆe. nghiˆe.mco ba’ncu’a hˆe  x1 +2x2 − 2x3 + x4 =0  .  2x1 +4x2 +2x3 − x4 =0 V´ıdu T`ım hˆe. nghiˆe.mcoba’ncu’a  x1 +2x2 +4x3 − 2x4 =0   4x1 +8x2 − 2x3 + x4 =0.
  20. 19 − −  12 21  12 21 24 2 −1 h2−2h1 00 6 −3 h3−h2  12−21 . A =   −→   −→ u´ng 12 4 −2 h3−h1 00 6 −3 h2:2 00 2 −1     h −h 48−21 h4−4h1 00 6 −3 4 2 . v´oihˆe.: x +2x − 2x + x =0 x = −2x  1 2 3 4 ⇔  1 2 2x3 − x4 =0 x4 =2x3. + Cho.n(x2,x3)=(1, 0), ta c´o:nghiˆe.m(−2; 1; 0; 0) + Cho.n(x2,x3)=(0, 1), ta c´o:nghiˆe.m (0; 0; 1; 2) . . . * Gia’ith´ıch c´acht`ım ma trˆa.nghi.ch d¯a’oo’ phˆa` n IV, chuo ng 1  a1,1 a1,2 a1,3 a1,n  a2,1 a2,2 a2,3 a2,n Cho ma trˆa.n vuˆong A =   c´odet(A) =0.X´6 et hˆe.   an,1 an,2 an,3 an,n n phu.o.ng tr`ınh 2n ˆa ’n:  a1,1x1 + a1,2x2 + a1,3x3 + ···+ a1,nxn + xn+1 =0   a2,1x1 + a2,2x2 + a2,3x3 + ···+ a2,nxn + xn+2 =0   a3,1x1 + a3,2x2 + a3,3x3 + ···+ a3,nxn + xn+3 =0    an,1x1 + an,2x2 + an,3x3 + ···+ an,nxn + xn+1 =0 c´oda.ng ma trˆa.n A × X + X0 =0⇔ A × X = −X0 (1)  x1   xn+1  x2 xn+2     v´o.i X =  x3  v`a X0 =  xn+3   .   .   .   .   .   .  xn x2n v`ı det(A) =06 , ∃A−1 nˆen:(1)⇔ X = −A−1 × X0 ⇔ X + A−1 × X0 = 0 (*) |  a1,1 a1,2 a1,3 a1,n 100 0  a2,1 a2,2 a2,3 a2,n | 010 0   Hˆe. c´oma trˆa.nhˆe. sˆo´:  a3,1 a3,2 a3,3 a3,n | 001 0  =(A|E)     an,1 an,2 an,3 an,n | 000 1 . . . . . Gia’ su’ qua c´acph´ep biˆe´nd¯ˆo’isocˆa´p trˆenc´ach`ang,ta d¯uad¯uo. c ma trˆa.nvˆe` da.ng  100 0 | b1,1 b1,2 b1,3 b1,n  010 0 | b2,1 b2,2 b2,3 b2,n    001 0 | b3,1 b3,2 b3,3 b3,n  =(E|B)     000 1 | bn,1 bn,2 bn,3 bn,n
  21. 20 . . u´ng v´oihˆe.:  x1 + b1,1xn+1 + b1,2xn+2 + b1,3xn+3 + ···+ b1,nx2n =0   x2 + b2,1xn+1 + b2,2xn+2 + b2,3xn+3 + ···+ b2,nx2n =0   x3 + b3,1xn+1 + b3,2xn+2 + b3,3xn+3 + ···+ b3,nx2n =0    xn + bn,1xn+1 + bn,2xn+2 + bn,3xn+3 + ···+ bn,nx2n =0 0 − c´oda.ng X + B × X = 0, suy ra B = A 1 BAI` TAˆ. P  3x − 5y +2z +4t =2  2x + y − z =1 . .   2.1. Gia’ic´achˆe. phuong tr`ınhsau:  7x − 4y + z +3t =5  x − y + z =2  5x +7y − 4z − 6t =3  4x +3y + z =3  x + y − 3z = −1  2x +3y − z +5t =0  x − 2y +3z − 4t =4  2x + y − 2z =1  3x − y +2z − 7t =0  y − z + t = −3    x +2y − 3z =1 4x + y − 3z +6t =0 x +3y − 3t =1     x + y + z =3  x − 2y +4z − 7t =0  −7y +3z +3t = −3  x − y +2z − 3t =1  2x + y − 3z =4  x +3y +4z =8     x +4y − z − 2t = −2  x +2y + z =1  2x + y − z =2  x − 4y +3z − 2t = −2  3x − 3y +2z =11  2x +6y − 5z =4   x − 8y +5z − 2t = −2  2x +3y − z + t =2  3x +4y +5z +7t =1  x + y +5z = −7  2x +3y + z =4  2x +6y − 3z +4t =2  x +3y + z =5    2x +3y +2z =3 4x +2y +13z +10t =0 2x + y + z =2     2x +3y =5  2x +21z +13t =3  2x +3y − 3z =14  2x − 5y +4z +3t =0  3x + y − 3z + t =1  x +2y +3z − t =1  3x − 4y +7z +5t =0  2x − y +7z − 3t =2  3x +2y + z − t =1    4x − 9y +8z +5t =0 x +3y − 2z +5t =3 2x +3y + z + t =1     3x − 2y +5z − 3t =0  3x − 2y +7z − 5t =3  5x +5y +5z =2  8x +6y +5z +2t =21  x1 + x2 =1    3x +3y +2z + t =10  x1 + x2 + x3 =4    4x +2y +3z+=8 x2 + x3 + x4 = −3  3x +5y + z + t =15  x3 + x4 + x5 =2    7x +4y +5z +2t =18  x4 + x5 = −1  x1 +2x2 +3x3 +4x4 =0  7x +14x +20x +27x =0  1 2 3 4 5x1 +10x2 +16x3 +19x4 = −2   3x1 +5x2 +6x3 +13x4 =5 2.2. Gia’iv`abiˆe.n luˆa.n theo a c´achˆe. sau:
  22. 21  (a +1)x + y + z =1  ax + y + z + t =1    x +(a +1)y + z = a  x + ay + z + t = a 2 2  x + y +(a +1)z = a  x + y + az + t = a  x − y + az + t = a − −  2 11 1   x   1   x + ay − z + t = −1  2 −10−3 y 2   ×   =   ax + ay − z − t = −1  30−11  z   −3   22−2 a t −6  x + y + z + t = −a  ax1 − 3x2 + x3 = −2 . .  2.3. Cho hˆe. phuong tr`ınh ax1 + x2 +2x3 =3  3x1 +2x2 + x3 = b. . . . a. T`ım a d¯ ˆe ’ hˆe. trˆen l`ahˆe. Cramer; ´ung v´oi gi´atri. cu’a a v`ua t`ım,t`ımnghiˆe.mcu’ahˆe. theo b. b. T`ım a, b d¯ ˆe ’ hˆe. trˆen vˆonghiˆe.m. c. T`ım a, b d¯ ˆe ’ hˆe. trˆen c´ovˆosˆo´ nghiˆe.m, t`ımnghiˆe.mtˆo’ng qu´atcu’ahˆe . . 2.4. T`ım m d¯ ˆe ’ c´achˆe. phuong tr`ınhsau d¯ˆay: a. c´onghiˆe.m 23 1 x 7 36 −9         x   37−6 × y = −2 ; 48 ×   = 12 ; y  58 1  x   m   27  m   32 5  x   1   375  x   −m  24 6 × y = 3 ; 231 × y = 2 ;  57m   z   5   693  z   5  mx +2y +3z +2t =3 3x +4y +5z +7t =1      2x + my +3z +2t =3  2x +6y − 3z +4t =2   ;  2x +3y + mz +2t =3 4x +2y +13z +10t = m   2x +3y +2z + mt =3  5x +21z +13t =3   2x +3y +2z +3t = m  2x − y + z − t =1   x + y +(1− m)z = m +2  2x − y − 3t =2  b. vˆonghiˆe.m:  ;  (1 + m)x − y +2z =0 3x − z + t = −3   2x − my +3z = m +2  2x +2y − 2z + mt = −6  mx1 + x2 + x3 + ···+ xn =0  x1 + mx2 + x +3+···+ xn =0   c. vˆod¯i.nh: x1 + x2 + mx3 + ···+ xn =0    x1 + x2 + x3 + ···+ mxn =0  3x +2y + z + t =1   3x +2y + z =3  x + my − z +2t =0  2x +3y + z + t =1    ;  mx + y +2z =3 ;  2x − y + mz +5t =0 x +2y +3z − t =1   mx − 3y + z = −2  x +10y − 6z + t =0  5x +5y +2z =2m +1
  23. 22 d. c´onghiˆe.m duy nhˆa´t: x +4y +3z +6t =0 x +3y − z + t =1 x + y + z + mt =1        −x + z + t =0  3x +3y − z + mt =2  x + my + z + t =1   ;  ;  2x + y − z =0 2x +2y + z + t =3 mx + y + z + t =1    2y + mx =0  5x +3y +2t =1  x + y + mz + t =1   2x +5y +3z +7t =0 . 2.5. Ch´ung minh hˆe. sau c´onghiˆe.m duy nhˆa´t, t`ımnghiˆe.m d¯´o:  x2 + x3 + x4 + ···+ xn−1 + xn =1   x1 + x3 + x4 + ···+ xn−1 + xn =2   x1 + x2 + x4 + ···+ xn−1 + xn =3    x1 + x2 + x3 + x4 + ···+ xn−1 = n 2.6. T`ım d¯iˆ`eukiˆe.n theo a d¯ ˆe ’ hˆe. sau c´onghiˆe.m duy nhˆa´t  x1 + ax2 =0   x1 +(1+a)x2 + ax3 =0   x2 +(1+a)x3 + ax4 =0  x3 +(1+a)x4 + ax5 =0   x4 +(1+a)x5 =0 . . 2.7. Biˆe.n luˆa.n theo a sˆo´ nghiˆe.mcu’ahˆe. phuong tr`ınh:  (a − 3)x + y + z =0  ax + ay + z = a    x +(a − 3)y + z =0;  ax + y + az =1;  x + y +(a − 3)z =0  x + ay + az =1  x − y + az + t = a  ax + ay +(a +1)z = a    x + ay − z + t = −1  ax + ay +(a − 1)z = a ;  ax + ay − z − t = −1  (a +1)x + ay +(2a +3)z =1   x + y + z + t = −a . . . . 2.8. T`ım nghiˆe.m nguyˆenduong (nˆe´u c´o)cu’ahˆe. phuong tr`ınhsau: x + y + z = 100 x +2y +3z =14  ;  ; x +15y +25z = 500 2x +3y − z =5  x − y + z + t =2 x +3y − 3z =1   ;  2x + y − 3z +2t =2 3x − 3y +4z =4  3x − 2y + z + t =3 . 2.9. T`ım c´acd¯ath´ucbˆa.c3f(x)biˆe´t: a. f(−1) = 0; f(1) = 4; f(2) = 3; f(3) = 16; b. f(−1) = 5; f(1) = 5; f(3) = 45; f(−4) = −25. . . . 2.10. T`ım nghiˆe.mtˆo’ng qu´atv`ahˆe. nghiˆe.mcoba’ncu’ahˆe. phuong tr`ınhsau:
  24. 23  x + y − 4z =0  2x − y +5z +7t =0    2x +9y +6z =0  4x − 2y +7z +5t =0;  ; 3x +5y +2z =0  2x − y + z − 5t =0   4x +7y +5z =0  x +2y +4z − 3t =0  x +8z +7t =0    3x +5y +6z − 4t =0  2x + y +4z + t =0  ;  4x +5y − 2z +3t =0 3x +2y − z − 6t =0    3x +8y +24z − 19t =0  7x +4y +6z − 5t =0 2.11. . . a. Trong mˆo.t x´ınghiˆe.psa’n xuˆa´t, c´o15 cˆongnhˆand¯uo. c chia l`am3 bˆa.c (I,II,III), . . . . . . huo’ ng luong th´anglˆa`nluo. t l`a: 600.000, 500.000, 400.000 d¯ˆo`ng. Mˆo˜i th´angx´ı . . nghiˆe.p ph´at7,7 triˆe.ud¯ˆo`ng tiˆe` nluong. Ho’i trong x´ı nghiˆe.pˆa´y, sˆo´ cˆongcˆongmˆo˜i bˆa.cc´othˆe’ l`abao nhiˆeu? . b. Mˆo.tho. p t´acx˜anˆongnghiˆe.p c´o300 ha d¯ˆa´t, 850 cˆonglao d¯ˆo.ng v`a65 triˆe.ud¯ˆo`ng . . tiˆe` nvˆo´n d`anhcho sa’n xuˆa´tvu. h`ethu v´oidu. d¯ i .nh trˆo`ng c´acloa.i cˆayI,II,III c´ochi ph´ısa’n xuˆa´t cho mˆo˜i ha giao trˆo`ng nhu. sau: Loa.i cˆay Vˆo´nb˘a`ng tiˆe` n (d¯ˆo`ng) Lao d¯ˆo.ng (cˆong) I 200.000 2 II 150.000 3 III 400.000 5 -ooOoo-
  25. 24 Chu.o.ng 3 HAM` NHI`EˆUBIEˆ´N&T´ICH PHANˆ KEP´ I. H`amnhiˆe` ubiˆe´n 1. Kh´ainiˆe.m * Cho D ⊂ R2.Mˆo.t ´anhxa. f : D → R (x, y) 7→ f(x, y)=z ∈ R . . . . d¯ u o. cgo.il`ah`amhai biˆe´n x´acd¯i.nh trˆen D, D d¯ u o. cgo.il`amiˆ`en x´acd¯i.nh cu’a h`amhai biˆe´n f(x, y). V´ıdu +Miˆe` n x´acd¯i.nh cu’a h`am z = f(x, y)=p1 − x2 − y2 l`atˆa.p D = (x, y) ∈ R2 : x2 + y2 ≤ 1 (h`ınhtr`ontˆam O b´ank´ınh1). +Miˆe` n x´acd¯i.nh cu’a h`am z = f(x, y)=ln(x+y) l`atˆa.p D = (x, y) ∈ R2 : x + y>0 . . . (nu’ am˘a.t ph˘a’ ng n˘a`m ph´ıatrˆen d¯u`o ng th˘a’ ng y = −x trˆen m˘a.t ph˘a’ ng xOy. . . * Cho h`amhai biˆe´n z = f(x, y). Trˆen m˘a.t ph˘a’ ng Oxy,mˆo˜ic˘a.p(x, y)d¯uo. cbiˆe’udiˆe˜n . bo’ imo.td¯iˆe’m M(x, y), nˆen ta c´othˆe’ xem z = f(x, y) l`ah`amc´acd¯iˆe’m M(x, y), k´y hiˆe` u z = f(M). * Cho h`amhai biˆe´n z = f(x, y) c´omiˆe` n x´acd¯i.nh D. Trong khˆonggian Oxyz,x´et c´acd¯iˆe’m P (x, y, z) tho’a m˜an(x, y) ∈ D v`a z = f(x, y). Khi M cha.y trˆenmiˆe` n D, . . c´acd¯iˆe’m P va.ch trong khˆonggian mˆo.tm˘a.t cong d¯uo. cgo.il`ad¯` ˆo thi. cu’a h`am hai biˆe´n x = f(x, y). n * Cho D ⊂ R = {(x1,x2, ,xn):xi ∈ R,i =1, , n}.Mˆo.t ´anhxa. f : D → R (x1,x2, ,xn) 7→ f(x1,x2, ,xn)=z ∈ R . . . . d¯ u o. cgo.il`ah`am n biˆe´n f(x1,x2, ,xn) x´acd¯i.nh trˆen D (D d¯ u o. cgo.il`amiˆ`en x´acd¯i.nh). . * Cho h`amhai biˆe´n z = f(x, y) x´acd¯i.nh trong khoa’ng ho’ U cu’a Mo(xo,yo) (khˆong . . . cˆa`n x´acd¯i.nh ta.i Mo). Sˆo´ L d¯ u o. cgo.il`agi´o iha.ncu’a f(x, y) khi M(x, y) dˆa` n . d¯ ˆe´n Mo(xo,yo)nˆe´uv´oimo.i d˜ayd¯iˆe’m Mn(xn,yn) thuˆo.c U dˆa`nd¯ˆe´n Mo(xo,yo), ta d¯` ˆe u c´o: lim f(xn,yn) → L.Tak´yhiˆeu: n→∞ . lim f(x, y)=L. x→xo y→yo . . * H`amsˆo´ z = f(x, y) x´acd¯i.nh trong miˆ`en D d¯ u o. cgo.il`aliˆentu.cta.i Mo(xo,yo) ∈ D nˆe´u: lim f(x, y)=f(xo,yo). x→xo y→yo
  26. 25 2. D- a.o h`amv`avi phˆanh`amnhiˆe` ubiˆe´n 2.1. D- a.o h`amriˆeng . * Cho h`amsˆo´ z = f(x, y) x´acd¯i.nh trˆenkhoa’ng ho’ U cu’a Mo(xo,yo), khi d¯´o∆x = . . . . x−xo v`a∆y = y−yo d¯ u o. cgo.ilˆa`nluo. tl`asˆo´ gia cu’abiˆe´nsˆo´ x v`a y,∆xz = f(xo+ . . . . ∆x, yo)−f(xo,yo)v`a∆yz = f(xo,yo+∆y)d¯uo. cgo.ilˆa`nluo. tl`asˆo´ gia riˆeng cu’a h`am z = f(x, y) theo x v`atheo y ta.i Mo(xo,yo), c`on∆z = f(xo +∆x, yo +∆y)−f(xo ,yo) . . d¯ u o. cgo.il`asˆo´ gia to`anphˆa` ncu’a h`am z = f(x, y) ta.i Mo(xo,yo). ∆xz ∆yz . . . . *Nˆe´u lim v`a lim tˆo`nta.ih˜uuha.n th`ıc´acgi´oiha.n d¯´od¯uo. cgo.i l`ac´ac ∆x→0 ∆x ∆y→0 ∆y d¯ a.o h`amriˆeng cu’a h`am x = f(x, y) ta.i (xo,yo) cu’abiˆe´n x v`abiˆe´n y,k´y . . hiˆe.ulˆa`nluo. t l`a: 0 0 ∂z ∆xz zx(xo,yo)=fx(xo,yo)= (xo,yo) = lim ∂x ∆x→0 ∆x 0 0 ∂z ∆yz zy(xo,yo)=fy(xo,yo)= (xo,yo) = lim ∂y ∆y→0 ∆y *Nˆe´u h`am z = f(x, y) c´oc´acd¯a.o h`amriˆengtheo biˆe´n x v`abiˆe´n y ta.i ∀(x, y) ∈ D, ta n´oi z = f(x, y) c´oc´acd¯a.o h`amriˆengtheo biˆe´n x v`atheo biˆe´n y trong miˆ`en D,k´yhiˆe.u l`a: ∂z ∂z f 0 (x, y)=z0 = ; f 0 (x, y)=z0 = x x ∂x y y ∂y V´ıdu T´ınh c´acd¯a.o h`amriˆeng cu’a + z = xy ,x>0: 0 y 0 y−1 zx =(x )x = yx ; 0 y 0 y zy =(x )x = x . ln x x + z = e y : 0 0 x x x x 1 0 y y   y zx = e  = e . = e . ; x y x y 0 0 0 x x  x x  x  x x  y  y y − − y zy = e = e . = e . 2 = 2 .e y y y y y + z = Arctg xy; (xy)0 y z0 = (Arctg xy)0 = x = ; x x 1+(xy)2 1+x2y2 (xy)0 x z0 = y = y 1+(xy)2 1+x2y2 2.2. Vi phˆan 0 0 . * Vi phˆanto`anphˆa`ncu’a h`amhai biˆe´n z = f(x, y) l`a: dz = zxdx + zydy,c´othˆe’ u´ng . . . du.ng d¯ˆe’ t´ınhgˆa`nd¯´ung gi´atri. cu’a h`amsˆo´ ph´ucta.p theo cˆongth´ucsˆo´ gia h˜uuha.n nhu. sau: 0 0 f(xo +∆x, yo +∆x) ' fx(xo,yo) · ∆x + fy (xo,yo) · ∆y + f(xo,yo)
  27. 26 V´ıdu T´ınh gˆa`n d¯´ungc´acsˆo´sau: a. A =(0.998)3.001; b. B = p(4.001)2 +(2.997)2 y a. X´et z = f(x, y)=x ta.i Mo(1; 3). Ta c´o: + f(x, y)=xy ⇒ f(1, 3) = 3.12 =3 0 y−1 0 2 + fx(x, y)=yx ⇒ fx(1, 3)=3.1 =3 0 y 0 3 + fy(x, y)=x . ln x ⇒ fy (1, 3)=1 . ln 1 = 0 Cho.n∆x = −0.002, ∆y =0.001, khi d¯´o: 3+0.001 A =(1− 0.002) = f(1 − 0.002, 3+0.001) = f(xo +∆x, yo +∆y) 0 0 ' fx(xo,yo) · ∆x + fy (xo,yo) · ∆y + f(xo,yo)=3· (−0.002) + 0 · (0.001) + 1 = 0.994 2 2 b. X´et z = f(x, y)=px + y ta.i M√o(4, 3). Ta c´o: + f(x, y)=px2 + y2 ⇒ f(4, 3) = 42 +32 =5 0 x 0 4 4 + fx(x, y)= ⇒ fx(4, 3) = = =0.8 px2 + y2 42 +32 5 0 y 0 3 3 + fy(x, y)= ⇒ fx(4, 3) = = =0.6 px2 + y2 42 +32 5 Cho.n∆x =0.001, ∆y = −0.003, khi d¯´o: 2 2 2 2 B = p(4.001) +(2.997) = p(4 + 0.0001) +(3− 0.003) = f(xo +∆x, yo +∆y) 0 0 ' fx(xo,yo) · ∆x + fy(xo,yo) · ∆y + f(xo,yo) =0.8 · 0.001 + 0.6 · (−0.003) + 5 = 4.999 0 0 . . *Nˆe´u c´acd¯a.o h`amriˆeng zx,zy (d¯uo. cgo.il`ad¯ a.o h`amriˆeng cˆa´p1)c˜ung c´od¯a.o . . h`amriˆeng th`ıc´acd¯a.o h`amriˆeng d¯´od¯uo. cgo.il`ad¯ a. o h`amriˆengcˆa´p2cu’a . . . z = f(x, y), d¯uo. ck´yhiˆe.u v`ax´acd¯i.nh nhu sau: ∂2f z00 = f 00 (x, y)= =(z0 )0 ; xx xx ∂x2 x x ∂2f z00 = f 00 (x, y)= =(z0 )0 ; xy xy ∂x∂y x y ∂2f z00 = f 00 (x, y)= =(z0 )0 ; yx yx ∂y∂x y x ∂2f z00 = f 00 (x, y)= =(z0 )0 yy yy ∂y2 y y +Nˆe´u z = f(x, y) c´oc´acd¯a.o h`amriˆengcˆa´p 2 liˆentu. c trong miˆe` n D th`ıtrong miˆe` n 00 00 d¯´o: zxy = zyx. *Nˆe´u z = f(u, v) l`ah`amkha’ vi v`a u = u(x, y),v = v(x, y) c´oc´acd¯a.o h`amriˆeng 0 0 0 0 ux,uy,vx,vy trong miˆe` n D th`ıtrong miˆ`end¯´otˆo`nta.i c´acd¯a.o h`amriˆeng 0 0 0 0 0 zx = zu · ux + zv · vx; 0 0 0 0 0 zy = zu · uy + zv · vy
  28. 27 u . 2 2 0 0 V´ıdu Cho z = e sin v v´oi u = xy, v = x + y .T´ınh zx,zy. 0 u 0 u 0 0 0 0 V`ı: zu = e sin v; zv = e cos v; ux = y; uy = x; vx =2x; vy =2y, nˆen: 0 0 0 0 0 u u xy 2 2 xy 2 2 + zx = zu ·ux +zv ·vx = e sin v·y+e cos v·2x = ye sin(x +y )+2xe cos(x +y ) 0 0 0 0 0 u u xy 2 2 xy 2 2 + zy = zu ·uy +zv ·vy = e sin v·x+e cos v·2y = xe sin(x +y )+2ye cos(x +y ) . 1.3. Cu. c tri. cu’a h`amhai biˆe´n . * Cho h`am z = f(x, y) x´acd¯i.nh, liˆentu. c trong miˆ`en D. Ta n´oi z d¯ a.t cu. cd¯a.i . . . . . . . (tuo ng tu. ,cu. ctiˆe’u) d¯i.a phuo ng ta.i Mo(xo,yo) ∈ D nˆe´utˆo`nta.i khoa’ng ho’ U . . . cu’a Mo(xo,yo) trong D sao cho f(xo,yo) ≥ f(x, y) (tuong tu. , f(xo,yo) ≤ f(x, y)) . v´oimo.i(x, y) ∈ D. . . + Quy t˘a´ct`ım cu. c tri.: Gia’ su’ z = f(x, y) c´od¯a.o h`amriˆeng liˆentu. cd¯ˆe´ncˆa´p . . 0 0 - 2 trong khoa’ng ho’ ch´ua Mo(xo,yo) v`ac´o fx(xo,yo)=fy(xo,yo)=0.D˘a.t A = 00 00 00 fxx(xo,yo),B = fxy(xo,yo),C = fyy(xo,yo), th`ı: 2 . +Nˆe´u B − AC 0th`ız = f(x, y)d¯a.tcu. ctiˆe’uta.i(xo,yo); 2 . +Nˆe´u B − AC > 0th`ı(xo,yo) khˆongpha’i l`ad¯iˆe’mcu. c tri.; 2 . . +Nˆe´u B − AC = 0 th`ıkhˆongkˆe´t luˆa.nd¯uo. c. . V´ıdu T`ım cu. c tri. cu’a h`amsˆo´: a. z = f(x, y)=x2 − xy + y2 +3x − 2y +1 b. z = x3 + y3 − 3xy 0 0 00 00 00 a. Ta c´o: zx =2x − y +3; zy = −x +2y +2; zxx =2; zxy = −1; zyy =2. 4 0  x = − zx =0 2x − y +3 =0  Gia’i  ⇔  ⇔  3 z0 =0 −x +2y − 2=0 1 y y =  3 4 1 ’ −  00 00 − 00 Ta.id¯iˆem Mo , , ta c´o: A = zxx =2,B = zxy = 1,C = zyy =2, 3 3 Mo Mo Mo nˆen: B2 − AC =(−1)2 − 2 · 2=−3 0. Vˆa.y Mo(0, 0) khˆongpha’i l`acu. c tri ’ 00 00 − 00 Ta.id¯iˆem M1(1, 1), ta c´o: A = zxx =6,B = zxy = 3,C = zyy =6, Mo Mo Mo 2 . . nˆen: B − AC =9− 36 = −27 < 0. Suy ra h`am2 biˆe´nd¯a.tcu. ctiˆe’uta.i M1(1, 1) v´oi zmin = −1. BAI` TAˆ. P x − y 3.1.1. Cho h`am f(x, y)= .Ch´u.ng minh: x + y lim limf(x, y) = 1; lim limf(x, y) = −1 x→0 y→0 y→0 x→0
  29. 28 trong khi d¯´o limf(x, y) khˆongtˆo`nta.i. x→0 y→0 x2y2 3.1.2. Cho h`am f(x, y)= .Ch´u.ng minh: x2y2 +(x − y)2 lim limf(x, y) = lim limf(x, y) =0 x→0 y→0 y→0 x→0 , trong khi d¯´o limf(x, y) khˆongtˆo`nta.i. x→0 y→0 1 1 3.1.3. Cho h`am f(x, y)=(x + y) sin sin .Ch´u.ng minh lim limf(x, y) v`a x y x→0 y→0 lim  limf(x, y) khˆongtˆo`ntai, nhu.ng limf(x, y)=0 y→0 x→0 . x→0 y→0 . 3.1.4. T´ınh c´acgi´oiha.n sau: 2 2 2 x x + y x + y xy 2 2 lim ; lim ; lim   ; lim(x2 + y2)x y x→0 x2 − xy + y2 x→0 x4 + y4 x→0 x2 + y2 x→0 y→0 y→0 y→0 y→0 3.1.5. Cho h`am x2 − y2  xy nˆe´u x2 + y2 =06 f(x, y)= x2 + y2  0 nˆe´u x2 + y2 =0. . Ch´ung minh f”yx(0, 0) =6 f”xy(0, 0). . . . . 3.1.6. Nghiˆen c´uucu. c tri. d¯ i .a phuong cu’a c´ach`amsau: a. z = x4 + y4 − x2 − 2xy − y2 +1 b. x =2x4 + y4 − x2 − 2y2 − 1 II. T´ıch phˆanhai l´o.p 1. D- `ınhngh˜ıa, t´ınh chˆa´t . . . . . Xuˆa´t ph´att`u c´acb`aito´anthu. ctˆe´ (nhu t´ınhthˆe’ t´ıch vˆa.tthˆe’ h`ınhtru. ,d¯u`ong k´ınh mˆo.tmiˆ`en), ta c´od¯i.nh ngh˜ıasau: . * Cho h`am z = f(x, y) x´acd¯i.nh trong miˆe` nh˜uuha.n D trong xOy. Phˆanhoa.ch D th`anh n miˆe` n nho’ tu`y´yc´otˆenv`adiˆe.nt´ıch∆s1, ∆s2, ,∆sn.Trˆen mˆo˜i∆Si (i =1, ,n), lˆa´y Mi(xi,yi) tu`y´yv`ago.itˆo’ng n In = Xf(xi,yi)∆si i=1 l`a tˆo’ng t´ıch phˆancu’a f(x, y) trong D. . . . Nˆe´u khi d¯u`ong k´ınh l´on nhˆa´tcu’a c´acmiˆe` n∆si dˆa`nd¯ˆe´n 0 (max di → 0) m`a In dˆa`n . d¯ ˆe´nmˆo.t gi´oiha.n x´acd¯i.nh I, khˆongphu. thuˆo.c c´ach chia miˆe` n D (phˆanhoa.ch) v`a
  30. 29 . . . c´ach cho.n Mi(xi,yi) trong mˆo˜imiˆe` n∆si th`ıgi´oiha.n d¯ ´o d¯ u o. cgo.il`at´ıch phˆan . hai l´o pcu’a f(x, y) trong miˆe` n D v`ak´yhiˆe.u l`a: n ZZ f(x, y)ds = lim Xf(xi,yi)∆si max di→0 D i=1 trong d¯´o f(x, y)l`ah`amdu.´o .idˆa´ut´ıch phˆan, D l`a miˆ`enlˆa´yt´ıch phˆan, ds l`a yˆe´utˆo´ diˆe.nt´ıch, x, y l`a biˆe´nt´ıch phˆan. . . . . . . . + Khi t´ıch phˆanhai l´optˆo`nta.i, ta c´othˆe’ chia D bo’ ilu´oi c´acd¯u`o ng song song v´oi . Ox, Oy, khi d¯´o∆si l`ah`ınhch˜u nhˆa.t, yˆe´utˆo´ diˆe.nt´ıchds b˘a`ng dx, dy: n ZZ f(x, y)dxdy = lim Xf(xi ,yi)∆si max di→0 D i=1 . . +Diˆe.n t´ıch miˆ`en D d¯ u o. c t´ınhb˘a`ng: S(D)=ZZ dxdy D . . +Tˆo’ ho. p tuyˆe´n t´ınhnh˜ung h`amkha’ t´ıch trˆen D c˜ung kha’ t´ıch trˆen D v`a: ZZ ZZ ZZ [αf1(x, y) ± βf2(x, y)]dxdy = α f1(x, y)dxdy ± β f2(x, y)dxdy D D D +Nˆe´u f(x, y) kha’ t´ıch trˆen D th`ı |f(x, y)| c˜ung kha’ t´ıch trˆen D v`a: ZZ ZZ f(x, y)dxdy ≤ |f(x, y)|dxdy D D . . . . + Chia D th`anh2 miˆ`en D1,D2 r`oi nhau bo’ imˆo.td¯u`ong L.Nˆe´u f(x, y) kha’ t´ıch trˆen ca’ D1,D2 (kˆe’ ca’ biˆen L) th`ın´okha’ t´ınhtrˆen D v`a: ZZ f(x, y)dxdy = ZZ f(x, y)dxdy + ZZ f(x, y)dxdy D D1 D +Nˆe´u f(x, y) kha’ t´ıch trˆen D v`a m ≤ f(x, y) ≤ M,∀(x, y) ∈ D, th`ı: ZZ f(x, y)dxdy ∃µ ∈ [m, M]: µ = D S(D)
  31. 30 +Nˆe´u f(x, y),g(x, y) kha’ t´ıch trˆen D v`athoa’ m˜an f(x) ≤ g(x) th`ı: ZZ f(x, y)dxdy ≤ ZZ g(x, y)dxdy D D 2. C´acht´ınh t´ıch phˆanhai l´o.p +Nˆe´u h`amsˆo´ f(x, y)liˆen tu. ctrˆen miˆe` n D = {a ≤ x ≤ b; ϕ(x) ≤ y ≤ ψ(x)} trong d¯´o ϕ(x)v`aψ(x)liˆen tu. ctrˆen [a, b] th`ı: b " ϕ(x) # ZZ f(x, y)dxdy = Z Z f(x, y)dy dx a ψ(x) D . . V´ıdu. 1. T´ınh thˆe’ t´ıch h`ınhtru. gi´oiha.nbo’ i c´acm˘a.t: x =0,x=1,y= −1,y=1,z=0,z= x2 + y2. 1 1 1 2 4 Ta c´o: V = ZZ f(x, y)dxdy = Z Z (x2 + y2)dy dx = Z 2x2 +  dx = 0 −1 0 3 3 D . . V´ıdu. 2. T´ınh thˆe’ t´ıch h`ınhtru. gi´oiha.nbo’ im˘a.t 2 z = f(x, y)=xy , m˘a.t z =0,x=0,x=1,y= −2,y=3. 1 3 2 1 3 3 Z Z 2 x y 35 Ta c´o: V = xdx · y dy = = 0 −2 2 0 3 −2 6 . . V´ıdu. 3. T´ınh thˆe’ t´ıch h`ınhtru. gi´oiha.nbo’ i c´acm˘a.t: x2 x =1,x=2,y= ,y= x2,z=0,z= xy. 2 2 2 " x # 2 3x5 63 Ta c´o: V = ZZ xydxdy = Z Z xydy dx = Z dx = . 2 1 x 1 8 16 D 2 ZZ . . . . . 2 V´ıdu. 4. T´ınh xdxdy,v´oi D l`amiˆe` n gi´oiha.nbo’ i c´acd¯u`ong y = x v`a y = x . D . . 2 Miˆe` n D d¯ u o. c x´acd¯i.nh: D = {0 ≤ x ≤ 1; x ≤ y ≤ x}, nˆen: 1 x 1 ZZ xdxdy = Z Z xdy dx = . 0 x2 12 D ZZ . . . . . . V´ıdu. 5. T´ınh I = (x − y)dxdy, trong d¯´o D d¯ u o. c gi´oiha.nbo’ i c´acd¯u`o ng D y = ±1,x= y2,y= x +1.
  32. 31 . . 2 Miˆe` n D d¯ u o. c x´acd¯i.nh: D = {−1 ≤ y ≤ 1; y − 1 ≤ x ≤ y }, suy ra: 2 1 " y # 1 y4 y2 1 −7 I = Z Z (x − y)dx dy = Z  − y3 + −  dy = . −1 y−1 −1 2 2 2 15 0  x = x(u, v) + Cho f(x, y) liˆentu. c trˆen D d¯´ongv`abi. ch˘a.n, l`aa’nh cu’a D qua ´anhxa. . y = y(u, v) Nˆe´u x(u, v),y(u, v)liˆen tu. c v`ac´oc´acd¯a.o h`amriˆeng liˆen tu. c ∂x ∂x J(u, v)= ∂u ∂v =06 , ∀(u, v) ∈ D0 ∂y ∂y ∂u ∂v th`ı: ZZ f(x, y)dxdy = ZZ f[x(u, v),y(u, v)]|J(u, v)|dudv D D0  x = r cos ϕ Ch˘a’ ng ha.n khi d¯˘a.t th`ı: y = r sin ϕ cos ϕ −r sin ϕ J(u, v)= = r sin ϕrcos ϕ khi d¯´o: ZZ f(x, y)dxdy = ZZ f(r cos ϕ, r sin ϕ)rdrdϕ D D0 ZZ −x2−y2 . . . V´ıdu. 6. T´ınh t´ıch phˆan I = e dxdy trong d¯´o D l`ad¯u`o ng tr`ond¯onvi D 2π 1 2π 2 1 1 1 Ta c´o: I = Z dϕ Z e−r rdr = Z 1 −  dϕ = π 1 − . 0 0 0 2 e e ZZ . V´ıdu. 7. T´ınh t´ıch phˆan I = (x +2y)dxdy, trong d¯´o D l`ah`ınhb`ınh h`anhgi´oiha.n D bo’.i c´acd¯u.`o.ng x + y =1,x+ y =2, 2x − y =1, 2x − y =3. 1 1 1 Ta c´o: D0 = {(u, v): 1≤ u ≤ 2, 1 ≤ v ≤ 3} v`a J = 3 3 = − =06 , nˆen: 2 1 3 − 3 3 1 u + v 4u − 3v I = ZZ −  +  dudv 3 3 3 D0 1 2 3 1 2 11 = − Z Z (5u − v)dv du = − Z (10u − 4)du = − 9 1 1 9 1 9
  33. 32 ZZ . V´ıdu. 8. T´ınh I = ydxdy v´oi D l`amiˆe` n: D . . a. H`ınh qua.t tr`ontˆam O, b´ank´ınh a n˘a`m trong g´ocphˆa`ntuth´u 2. . . . . . . . b. Miˆe` n gi´oiha.nbo’ i c´acd¯u`ong cong c´ophuong tr`ınhtrong hˆe. toa. d¯ ˆo. cu. c l`a: r = 2 + cos ϕ, r =1. π a a3 π a3 a. I = Z sin ϕdϕ Z r2dr = Z sin ϕdϕ = . π 3 π 3 2 0 2 2π 2+cos ϕ 1 2π b. I = Z Z rdr sin ϕdϕ = Z (3 + 4 cos ϕ + cos2 ϕ) sin ϕdϕ =0. 0 1 2 0 ZZ V´ıdu. 9. T´ınh I = p4 − x2 − y2dxdy trong d¯´o: D D l`anu’.atrˆen cu’a h`ınhtr`on(x − 1)2 + y2 ≤ 1.  x = r cos ϕ 0 π D- ˘a.t th`ı D = {(r, ϕ): 0≤ r ≤ 2 cos ϕ, 0 ≤ ϕ ≤ }, khi d¯´o: y = r sin ϕ 2 π 2 cos ϕ π 2 8 2 8 π 2 I = Z Z p4 − r2rdr dϕ = Z (1 − sin3 ϕ)dϕ =  − . 0 0 3 0 3 2 3 III. T´ıch phˆan3 l´o.p 1. D- .inh ngh˜ıa, t´ınh chˆa´t . . 3 Cho f l`amˆo.t h`ambi. ch˘a.n, x´acd¯i.nh trˆen mˆo.ttˆa.p V d¯od¯uo. c trong R . Chia V . . . . th`anhh˜uuha.nnh˜ung tˆa.p Vi d¯od¯uo. c, khˆongc´od¯iˆe’m trong chung. Lˆa.ptˆo’ng t´ıch phˆan n X f(ξ,η,τ)∆Vi (1) i=1 . o’ d¯ˆay∆Vi l`athˆe’ t´ıch tˆa.p Vi,v`a(ξ,η,τ) l`amˆo.td¯iˆe’m tu`y´ythuˆo.c Vi. . . . *Go.i D l`asˆo´ l´on nhˆa´t trong c´acd¯u`ong k´ınh d(Vi)cu’a ph´epphˆanhoa.ch {Vi}1≤i≤n. Nˆe´u n lim X f(ξ,η,τ)∆Vi D→0 i=1 . . . tˆo`nta.i th`ıgi´atri. n`ayd¯uo. cgo.il`at´ıch phˆanba l´o pcu’a h`am f trˆentˆa.p V v`a . . d¯ u o. ck´yhiˆe.ul`a ZZZ f(x, y, z)dxdydz, V . . h`am f d¯ u o. cgo.il`akha’ t´ınh trˆen V . . . . . . . +T´ıch phˆanba l´op c´oc´act´ınh chˆa´t ho`anto`antuong tu. nhu t´ıch phˆanhai l´op. 2. C´acht´ınh t´ıch phˆanba l´o.p +Nˆe´umiˆe` nlˆa´y t´ıch phˆanl`amˆo.th`ınh hˆo.p V =[a1,b1] × [a2,b2] × [a3,b3],
  34. 33 th`ı: b1 " b2 b3 ! # ZZZ f(x, y, z)dxdydz = Z Z Z f(x, y, z)dz dy dx a1 a2 a3 V ZZZ . V´ıdu T´ınh I = xyzdxdydz v´oi V =[0, 1] × [2, 4] × [5, 8]. V 1 4 8 2 1 2 4 2 8 Z Z Z x y z 1 39 117 I = xdx · ydy · zdz = · · = · 6 · = 0 2 5 2 0 2 2 2 5 2 2 2 . . . +Nˆe´umiˆe` n l`amˆo.tthˆe’ tru. mo’ rˆo.ng (gi´oiha.nbo’ i2m˘a.t ψ1(x, y),ψ2 (x, y), m˘a.t tru. c´od¯u.`o.ng sinh song song Oz,d¯u.`o .ng chuˆa’n l`abiˆen Dxy = {(x, y): a ≤ x ≤ y,ϕ1(x) ≤ y ≤ ϕ2(x)} . v´oi ϕ1,ϕ2 liˆentu. ctrˆen [a, b] th`ı: b " ϕ2(x) ψ1(x,y) ! # ZZZ f(x, y, z)dxdydz = Z Z Z d(x, y, z)dz dy dx a ϕ1(x) ψ2(x,y) V ZZZ . . . V´ıdu. . T´ınh (1 − x − y)dxdydz v´oimiˆe` n V gi´oiha.nbo’ i c´acm˘a.t ph˘a’ ng toa. d¯ ˆo. v`a V m˘a.t ph˘a’ ng x + y + z =1. Ta c´o: V = {(x, y, z): 0≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y}, nˆen: 1 1−x 1−x−y 1 1−x I = Z Z Z (1 − x − y)dz dy dx = Z Z (1 − x − y)2dy dx 0 0 0 0 0 1 1 1 = Z (1 − x)3(1 − x3)dx = 0 3 12 . . . * D- ˆo’ibiˆe´n trong t´ıch phˆanba l´o p: Cho f liˆentu.ctrˆen miˆe` n d¯´ong,d¯od¯uo. cv`a  x = x(u, v, w) 3 . 0 .  bi. chˆa.n V ⊂ R ,v´oi V l`aa’nh cu’a V qua d¯on ´anh  y = y(u, v, w) Nˆe´u c´ach`am  z = z(u, v, w). sˆo´ x = x(u, v, w),y = y(u, v, w),z = z(u, v, w) liˆentu.c, c´oc´acd¯a.o h`amriˆeng liˆen 0 tu.ctrˆen V v`anˆe´u x0 x0 x0 D(x, y, z) u v w J(u, v, w)= = y0 y0 y0 =06 D(u, v, w) u v w z0 z0 z0 u v w
  35. 34 0 th`ıta.imo.id¯iˆe’m (u, v, w) ∈ V , ta c´o: ZZZ f(x, y, z)dxdydz = ZZZ f[x(u, v, w),y(u, v, w),z(u, v, w)]|J(u, v, w)|dudvdw V V 0  x = r cos ϕ  +Nˆe´u theo toa. d¯ ˆo. tru.:  y = r sin ϕ th`ı:  z = r, cos ϕ −r sin ϕ 0 J(r, ϕ, z)= sin ϕrcos ϕ 0 001 nˆen ZZZ f(x, y, z)dxdydz = ZZZ f(r cos ϕ, r sin ϕ, z)rdrdϕdz V V 0 ZZZ 2 2 . . V´ıdu T´ınh I = (x + y )zdxdydz trong d¯´o V l`amiˆ`en gi´oiha.nbo’ i c´acm˘a.t V x2 + y2 =1v`az =2. . . . H`ınh tru. tr`onxoay V d¯ u o. c x´acd¯i.nh bo’ i: V = {(r, ϕ, z): 0≤ r ≤ 1, 0 ≤ ϕ ≤ 2π,0 ≤ z ≤ 2}, suy ra: 2 2π 1 I = Z zdz · Z dϕ · Z dr = π. 0 0 0  x = r cos ϕ sin θ  +Nˆe´u theo toa. d¯ ˆo. cˆa`u:  y = r sin ϕ sin θ th`ı:  z = r cos θ, cos ϕ sin θrcos ϕ cos θ −r sin ϕ sin θ J(r, ϕ, θ)== sin ϕ sin θrcos θ sin ϕrcos ϕ sin θ cos θ −r sin θ 0 nˆen ZZZ f(x, y, z)dxdydz == ZZZ f(r cos ϕ sin θ, r sin ϕ sin θ, r cos θ)r2 sin θdrdϕdθ V V 0 ZZZ 2 2 . . V´ıdu T´ınh I = (x + y )dxdydz trong d¯ˆo´ V l`amiˆ`en gi´oiha.nbo’ im˘a.tcˆa`u V x2 + y2 + z2 =1v`am˘a.t n´on x2 = y2 − z2 =0(z>0).
  36. 35 √ 2  2 2 2! 2 2 2  x + y =  x + y + z =1 . .  2 Gia’ihˆe. giao tuyˆe´n l`ad¯u`ong tr`on  x2 + y2 − z2 =0, √ 2  z =  suy ra: 2 π V = {(r, ϕ, theta): 0≤ r ≤ 1, 0 ≤ ϕ ≤ 2π,0 ≤ θ ≤ } 4 v`a f(x, y, z)=x2 + y2 = r2 sin θ,nˆen 1 2π π π 4 1 4 I = Z r4dr · Z dϕ · Z dθ = 2π Z (1 − cos2 θ)d(− cos θ) 5 0 0 0 √ 0 3 π 4 − 2π cos θ  8 5 2 = − cos θ = π 5 3 0 30 ´. * U ng du.ng cu’at´ıch phˆank´ep . . 2 +Diˆe.n t´ıch cu’amˆo.th`ınh ph˘a’ ng D d¯´ong,d¯od¯uo. c, bi. chˆa.n trong R S(D)=ZZ dxdy D . . +Thˆe’ t´ıch miˆe` n V d¯od¯uo. c, d¯´ong,bi. chˆa.n V = ZZZ dxdydz V Nˆe´u V l`ah`ınh tru. cong, x´et D l`ah`ınh chiˆe´ucu’a V xuˆo´ng m˘a.t ph˘a’ ng, z = f(x, y) l`am˘a.ttrˆen h`ınhtru. cong: V = ZZ f(x, y)dxdy D . Nˆe´u V l`athˆe’ tru. mo’ rˆo.ng, x´et D l`ah`ınh chiˆe´ucu’a D lˆen xOy, z = . . ψ1(x, y),z = ψ2(x, y) l`am˘a.tdu´oi, m˘a.ttrˆen cu’a V : ZZZ V = f(ψ1(x, y),ψ2 (x, y))dxdy D . . . . . . V´ıdu. 1. T´ınh diˆe.nt´ıchh`ınh gi´oiha.nbo’ i c´acd¯u`ong th˘a’ ng x =1,x= 2 v`ac´acd¯u`ong a2 2a2 y = ,y = (x>0) x x
  37. 36 a2 2a2 D = {(x, y): 1≤ x ≤ 2, ≤ y ≤ }, suy ra: x x 2 2 2a 2 " x # 2a2 a2 S(D)=ZZ dxdy = Z Z dx dx = Z  −  dx = a2 ln 2 2 1 a 1 x x D x . . V´ıdu. 2. T´ınh thˆe’ t´ıch vˆa.tthˆe’ V gi´oiha.nbo’ i c´acm˘a.t x2 + y2 =2,z=4− x2 − y2,z=0. . . 2 2 V l`ah`ınhtru. cong, m˘a.ttrˆen c´ophuong tr`ınh z =4− x − y , h`ınhchiˆe´u D cu’a V lˆenm˘a.t ph˘a’ ng xOy l`ah`ınhtr`on x2 + y2 ≤ 2. Vˆa.y √ 2π 2 V = ZZ (4 − x2 − y2)dxdy = Z · Z (4 − r2)rdr =6π 0 0 D . . + Cho S l`am˘a.t cong c´ophuong tr`ınh z = f(x, y), trong d¯´o f liˆentu. c, c´od¯a.o h`am . . riˆeng liˆen tu. ctrˆen miˆe` n d¯´ong,bi. chˆa.n, d¯od¯uo. c, th`ıdiˆe.n t´ıch m˘a.t cong S l`a: ZZ q 0 2 0 2 S = 1+fx + fy dxdy D V´ıdu T´ınh diˆe.n t´ıch phˆa`nm˘a.tcˆa`u x2 + y2 + z2 = a2 n˘a`m trong m˘a.t tru. x2 + y2 = a2. . M˘a.t tru. c˘a´tm˘a.tcˆa`u th`anhhai ma’nh d¯ˆo´ix´ung nhau qua m˘a.t ph˘a’ ng xOy,mˆo˜i . . . ma’nh n`ayla.id¯uo. c c´acm˘a.t ph˘a’ ng toa. d¯ ˆo. chia th`anh4 ma’nh b˘a`ng nhau. V´oi z ≥ 0, ta a2 c´o: z = pa2 − x2 − y2, suy ra 1 + z0 2 + z0 2 = ,nˆen x y a2 − x2 = y2 2π a ZZ a Z Z rdr 2 S =8 dxdy =8x dϕ0 · √ =4πa 2 2 pa2 − x2 − y2 0 a − r x2+y2≤a2,x≥0,y≥0 BAI` TAˆ. P 3.2.1. T´ınh ZZ x ln ydxdy D . . v´oi D l`ah`ınhch˜u nhˆa.t: 0 ≤ x ≤ 4, 1 ≤ y ≤ e. 3.2.2. T´ınh ZZ (cos2 x + sin2 y)dxdy D
  38. 37 v´o.i D l`ah`ınhvuˆong: π π 0 ≤ x ≤ , 0 ≤ y ≤ . 4 4 3.2.3. T´ınh 2 " x2 # I = Z Z (2x − y)dy dx. 1 x 3.2.4. T´ınh ZZ (x − y)dxdy D . . . v´oi D l`ah`ınhgi´oiha.nbo’ i: y =2− x2,y=2x − 1. 3.2.5. T´ınh ZZ (x +2y)dxdy D . . . . . v´oi D l`ah`ınhgi´oiha.nbo’ i c´acd¯u`o ng th˘a’ ng: y = x, y =2x, x =2,x=3. 3.2.6. T´ınh ZZ ex+sin y cos ydxdy D . . v´oi D l`ah`ınhch˜u nhˆa.t: π 0 ≤ x ≤ π, 1 ≤ y ≤ . 2 3.2.7. T´ınh ZZ (x2 + y2)dxdy D . . . . . v´oi D l`amiˆe` n gi´oiha.nbo’ i c´acd¯u`ong y = x, x =0,y=1,y=2. 3.2.8. T´ınh ZZ ln(x2 + y2)dxdy D v´o.i D l`amiˆe` n h`ınhv`anhkh˘angi´u.x hai d¯u.`o .ng tr`on x2 + y2 = e2 v`a x2 + y2 = e4.
  39. 38 3.2.9. T´ınh ZZ (x2 + y2)dxdy D v´o.imiˆ`en D gi´o.i h`anbo’.id¯u.`o.ng tr`on x2 + y2 =2ax. 3.2.10. T´ınh ZZ x3ydxdy D . . . . . v´oi D l`amiˆe` n gi´oiha.nbo’ i c´acd¯u`ong y =0v`a y = p2ax − x2. 3.2.11. T´ınh ZZ sin(x + y)dxdy D . . . . . v´oi D l`amiˆe` n gi´oiha.nbo’ i c´acd¯u`ong π y =0,y= x, x + y = . 2 3.2.12. T´ınh ZZ x2(y − x)dxdy D . . . . . v´oi D l`amiˆe` n gi´oiha.nbo’ i c´acd¯u`ong x = y2 v`a y = x2. 3.2.13. T´ınh ZZ f(x, y)dxdy D . . . . . v´oi D l`amiˆe` n gi´oiha.nbo’ id¯u`o ng x2 y2 + =1, a2 b2 c`onh`amdu.´o.idˆa´u t´ıchphˆan 2 2 cq1− x − y a2 b2 f(x, y)=Z tdt. 0 3.2.14. T´ınh ZZ r2drdϕ D
  40. 39 v´o.i D l`amiˆe` n: a. C´acd¯u.`o.ng tr`on r = a v`a r =2a. b. D- u.`o .ng r = a sin 2ϕ. 3.2.15. T´ınh ZZ r sin ϕdrdϕ D v´o.i D l`amiˆe` n: π a. Quat tr`ongi´o.ihanbo’.i c´acd¯u.`o.ng r = a, ϕ = ,ϕ= π. . . 2 π b. Nu’.ad¯u.`o.ng tr`on r ≤ 2a cos ϕ, 0 ≤ ϕ ≤ . 2 c. Nu’.ad¯u.`o.ng tr`on r = 2 + cos ϕ v`a r =1. . . ’ . 3.2.16. Su’ du√.ng cˆongth´ucd¯ˆoibiˆe´n trong toa. d¯ ˆo. cu. c, t´ınhc´act´ıch phˆan: R " R2−x2 # a. Z Z ln(1 + x2 + y2)dy dx 0 0 √ R " Rx−x2 # Z Z 2 2 2 b. √ pR − x − y dy dx 0 − Rx−x2 3.2.17. a. T´ınh 1 2x Z Z dy dx 0 x x = u(1 − v) b˘a`ng c´achd`ung c´acbiˆe´nm´o.i  y = uv b. T´ınh ZZ dxdy D . . . . nˆe´u D gi´oiha.nbo’ i c´acd¯u`ong xy =1,xy=2,y= x, y =3x. 3.2.18. T´ınh c´act´ınhphˆanba l´o.p sau: x2 y2 z2 x2 y2 z2 a. I = ZZZ  + +  dxdydz v´o.i V gi´o.ihanbo’.im˘at + + =1. a2 b2 c2 . . a2 b2 c2 V ZZZ 2 2 . . . . . 2 2 2 b. I = (x + y )dxdydz,v´oi V d¯ u o. c gi´oiha.nbo’ i c´acm˘a.t x + y = z ,z=2. V ZZZ 2 2 . . . . . 2 2 c. I = (x + y )dxdydz,v´oi V d¯ u o. c gi´oiha.nbo’ i c´acm˘a.t x + y =2z, z =2. V
  41. 40 ZZZ . . . 3.2.19. T´ınh I = xyzdxdydz,v´oi V n˘a`m trong g´ocphˆa` n t´amth´u nhˆa´t, gi´oiha.n V . . bo’ i c´acm˘a.t sau, v´oi 0 <a<b,0 <α<β,0 <m<n: x2 + y2 x2 + y2 z = ,z = ,xy = a2,xy = b2,y = αx, y = βx m n -ooOoo-
  42. 41 Chu.o.ng 4 . . PHUONG TR`INH VI PHANˆ I. Phu.o.ng tr`ınhvi phˆancˆa´p1 1. Kh´ainiˆe.m chung . . . . *Tago.i phuo ng tr`ınh vi phˆancˆa´p1l`aphuong tr`ınhc´oda.ng F (x, y, y0)=0 (I) ho˘a.c 0 y = f(x, y)(Io) 0 trong d¯´o x l`abiˆe´nsˆo´, y l`ah`amcu’a x,v`ay l`ad¯a.o h`amcu’a y. . . . . *Nˆe´u c´oh`am y = ψ(x) tho’a m˜anphuong tr`ınh(I)hay(Io)th`ıy = ψ(x)d¯uo. cgo.i . . l`a nghiˆe.mcu’a phuo ng tr`ınh (I) hay (Io). . . *Nˆe´u c´oh`am y = ψ(x, C) ho˘a.chˆe. th´ucΦ(x, y, C)=0tho’a m˜an(I)hay(Io)v´oi C . . t`uy´ytrong miˆe` n n`aod¯´ocu’a R, v`av´oimˆo˜id¯iˆ`eukiˆe.nd¯ˆa`u y(xo)=yo v´oi(xo,yo) . . thuˆo.cmiˆe` n x´acd¯i.nh cu’aphuong tr`ınh,chı’ c´oduy nhˆa´t gi´atri. C = Co l`amcho y = ψ(x, Co) hay Φ(x, y, Co)=0tho’a m˜and¯iˆe` ukiˆe.nd¯ˆa`u, th`ı y = ψ(x, C) ho˘a.c . . . . Φ(x, y, C)=0d¯uo. cgo.il`anghiˆe.mtˆo’ng qu´atcu’a phuo ng tr`ınh (I) hay (Io). *Nˆe´u y = ψ(x, C) hay Φ(x, y, C) = 0 l`anghiˆe.mtˆo’ng qu´atcu’a(I)hay(Io), cho . . C = Co (gi´atri. cu. thˆe’ x´acd¯i.nh) th`ı y = ψ(x, Co) hay Φ(x, y, Co)=0d¯uo. cgo.i l`a nghiˆe.m riˆengcu’a (I) hay (Io). Nˆe´u nghiˆe.m y = ψ(x) khˆongpha’i l`anghiˆe.m . . riˆeng nhˆa.nt`unghiˆe.mtˆo’ng qu´atv´oibˆa´tk`y gi´atri. C n`ao(kˆe’ ca’ C = ±∞) th`ıta go.i n´ol`a nghiˆe.mk`ydi. cu’a (I) hay (Io). . . + (D- .inh l´ytˆo`nta.i v`aduy nhˆa´t nghiˆe.m): Cho phuong tr`ınh (Io).Nˆe´u f(x, y) . liˆentu.c trong miˆ`en n`aod¯´och´uad¯iˆe’m (xo,yo) th`ı tˆo`nta.i ´ıt nhˆa´tmˆo.t nghiˆe.m 0 y = ψ(x) sao cho yo = ψ(xo) v`anˆe´u fy (x, y) liˆentu.cta.i (xo,yo) th`ı y = ψ(x) tˆo`n ta.i duy nhˆa´t. . . 2. C´acloa.i phuo ng tr`ınh vi phˆancˆa´p1 2.1. Phu.o.ng tr`ınhbiˆe´nsˆo´ phˆanly dy L`aphu.o.ng tr`ınhm`anˆe´u thay y0 = th`ıc´othˆe’ biˆe´nd¯ˆo’ivˆ`e dang f (y)dy = dx . 1 . . . . f2(x)dx.Lˆa´y t´ıch phˆanbˆa´td¯i.nh2vˆe´ th`ıgia’id¯uo. cphuong tr`ınh. . . V´ıdu. 1. Gia’iphuong tr`ınh: ydy =(x2 +1)dx. Lˆa´y t´ıch phˆanhai vˆe´ cu’aphu.o.ng tr`ınh d¯˜acho: y2 x3 C 2 Z ydy = Z (x2 +1)dx ⇔ = + x + ⇔ y2 = x3 +2x + C 2 3 2 3 . . V´ıdu. 2. Gia’iphuong tr`ınh: (y − x2y)dy +(xy2 + x)dx =0.tag1 Ta c´o: (1)⇔ y(x2 − 1)dy = x(y2 +1)dx (2)
  43. 42 +Nˆe´u x2 − 1 ≡ 0 ⇔ x ≡±1th`ıdx = 0, nˆen(2) tho’a m˜an.Vˆa.y x = ±1 l`anghiˆe.m cu’a (1). y x +Nˆe´u x2 − 1 6≡ 0 ⇔ x 6≡ ±1: (2)⇔ dy == dx.Lˆa´y t´ıch phˆan2 vˆe´: y2 +1 x2 − 1 ydy xdx 1 1 1 Z = Z ⇔ ln |y2 +1| = ln |x2 − 1| + ln |C| y2 +1 x2 − 1 2 2 2 " y2 +1=C(x2 − 1), ∀C =06 ⇔ y2 +1=C(x2 − 1) (∀C =6 0). Vˆa.y (1) c´onghiˆe.m: x = ±1 . . V´ıdu. 3. Gia’iphuong tr`ınh: y0 =3x2y (1) dy Ta c´o: (1)⇔ =3x2y ⇔ dy =3x2ydx (2) dx 0 +Nˆe´u y ≡ 0th`ıy = 0, nˆen(2) tho’a m˜an.Vˆa.y y = 0 l`anghiˆe.mcu’a (1). dy +Nˆe´u y 6≡ 0: (2)⇔ =3x2dx.Lˆa´y t´ıch phˆan2 vˆe´: y 3 3 ln |y| = x3 +ln|C|⇔ln |y| =ln|Cex |⇔y = Cex , ∀C =06 x3 . Vˆa.y (1) c´onghiˆe.m: y = Ce (v´oi C t`uy´y). 2.2. Phu.o.ng tr`ınhvi phˆand¯˘a’ ng cˆa´pcˆa´p1 . . 0 . L`aphuong tr`ınhc´oda.ng y = f(x, y)v´oi f(λx, λy)=f(x, y), ∀λ =0.6 0 0 . . . D- ˘a.t y = ux, ta c´o: u x + u = y = f(x, y)=g(u), ta d¯uavˆe` phuong tr`ınhc´obiˆe´n sˆo´ phˆanly u0x = g(u) − u. . . V´ıdu. 6. Gia’iphuong tr`ınh: x + y y0 = (1) x − y 0 0 D- ˘a.t y = ux ⇒ y = u x + u, ta c´o: x + ux 1+u 1 − u dx (1)⇔ u0x + u = ⇔ u0x = − u ⇔ du = . x − ux 1 − u 1+u2 x Lˆa´y t´ıch phˆan2 vˆe´: du 1 2udu 1 ln |1+u2| ln |Cx2| Z − Z =ln|x| + ln |C|⇔arctg u − = 1+u2 2 1+u2 2 2 2 Vˆa.y (1) c´onghiˆe.m: y 2Arctg =ln|C(x2 + y2)|, ∀C =06 x . . V´ıdu. 5. Gia’iphuong tr`ınh: y2 y0 = − 2 (1) x2 0 0 D- ˘a.t y = ux ⇒ y = u x + u, ta c´o: (1)⇔ u0x + u = u2 − 2 ⇔ u0x = u2 − u − 2 (2)
  44. 43 u = −1 y = −x +Nˆe´u u2 − u − 2 ≡ 0 ⇔  th`ı u0 = 0, (2) tho’a m˜an,vˆay  l`ac´ac u =2 . y =2x nghiˆe.mcu’a (1) u =6 −1 +Nˆe´u u2 − u − 2 6≡ 0 ⇔  th`ı(2) tu.o.ng d¯u.o.ng v´o.i: u =26 du dx 1 u − 2 1 u − 2 = ⇒ ln + ln C ⇔ ln = Cx3 u2 − u − 2 x 3 u − 1 3 u +1 " y − 2x = Cx3(y + x) ⇔ y−2x = Cx3(y+x), ∀C =6 0. Suy ra c´acnghiˆe.mcu’a (1) l`a: y = −x v´o.i C t `u y ´y . 2.3. Phu.o.ng tr`ınhvi phˆantuyˆe´n t´ınhcˆa´p1 . . 0 L`aphuong tr`ınh c´oda.ng y + p(x)y = q(x) trong d¯´o p(x),q(x) l`ac´ach`amliˆen tu. c trˆen [a, b]. . . . C´ach gia’i thu. chiˆe.n qua c´acbu´oc: . . − Gia’iphuong tr`ınhtuyˆe´n t´ınhthuˆa`n nhˆa´t(q(x) = 0), ta c´o: y ≡ 0 ho˘a.c dy = −p(x)dx ⇒ y = Ce− R p(x)dx,vˆay nghiˆem l`a: y = Ce− R p(x)dx y . . ∗ . . − T`ım nghiˆe.m riˆeng y cu’aphuong tr`ınhkhˆongthuˆa`n nhˆa´t(q(x) =6 0) b˘a`ng ∗ . − p(x)dx c´ach d¯˘a.t y = C(x).u(x)v´oi u(x)=e R , suy ra y∗ = e− R p(x)dx. Z q(x)eR p(x)dxdx. . . ∗ − lˆa.p nghiˆe.mtˆo’ng qu´atcu’aphuong tr`ınh khˆongthuˆa`n nhˆa´tda.ng y = y + y . . V´ıdu. 6. Gia’iphuong tr`ınh: y0 − 2xy = x . . 0 + Gia’iphuong tr`ınhthuˆa`n nhˆa´t y − 2xy = 0, ta c´onghiˆe.m: dy 2 y = 0 ho˘ac =2xdx ⇒ ln y = x2 +lnC ⇒ y = Cex . . y . . + Nghiˆe.mriˆeng cu’aphuong tr`ınhkhˆongthuˆa`n nhˆa´t l`a: 2 2 2 1 2 1 y∗ = ex . Z x.e−x dx = ex . − e−x  = − . 2 2 2 1 Vˆay (1) c´onghiˆemtˆo’ng qu´at: y = y + y∗ = Cex − v´o.i C t `u y ´y . . . 2 . . V´ıdu. 7. Gia’iphuong tr`ınh: 2 y0 +2xy = xe−x . . . 0 + Gia’iphuong tr`ınhthuˆa`n nhˆa´t y +2xy = 0, ta c´onghiˆe.m: dy 2 y = 0 ho˘ac = −2xdx ⇒ ln y = −x2 +lnC ⇒ y = Ce−x . . y
  45. 44 . . + Nghiˆe.mriˆeng cu’aphuong tr`ınhkhˆongthuˆa`n nhˆa´t l`a: 2 −x2 2 2 2 2 x e y∗ = e−x . Z x.e−x .ex dx = e−x . Z xdx = . 2 2 −x2 2 x e Vˆay (1) c´onghiˆemtˆo’ng qu´atl`a: y = y + y∗ = Ce−x + v´o.i C t `u y ´y . . . 2 2.4. Phu.o.ng tr`ınhBernoulli . . 0 α L`aphuong tr`ınhc´oda.ng y + p(x)y = q(x).y . y1−α D- ˆe ’ gia’i, gia’ thiˆe´t y 6≡ 0, chia 2 vˆe´ cho yα,rˆo`id¯˘at z = (l`ah`amtheo x, z 6≡ 0), . 1 − α gia’iphu.o.ng tr`ınhtuyˆe´n t´ınhcˆa´p 1 theo z. . . V´ıdu. 8. Gia’iphuong tr`ınh: y0 +2xy =2x3y3. 0 . . +Nˆe´u y ≡ 0th`ıy = 0: (1) tho’a m˜annˆen y = 0 l`anghiˆe.mcu’aphuong tr`ınh 1 +Nˆe´u y 6≡ 0 (1)⇒ y0y−3 +2xy−2 =2x3.D- ˘at z = − y−2 (l`ah`amtheo x, z 6≡ 0), . 2 th`ı: z0 = y0y−3,phu.o.ng tr`ınh tro’. th`anh z0 − 4xz =2x3 (3) Gia’i (3). Phu.o.ng tr`ınhthuˆa`n nhˆa´t: dz 2 z0 − 4xz =0⇒ =4xdx ⇒ z = Ce2x z v`anghiˆe.mriˆeng 2 2 2 1 1 2 1 1 z∗ = e2x Z 2x3e−2x dx = e2x − x2 +  e−2x  = x2 +  . 2 2 2 2 2 1 1 Vˆay (3) c´onghiˆemtˆo’ng qu´at: z = z +z∗ = Ce2x − x2 + , nˆen(1) c´onghiˆem . . 2 2 . 1 2 1  = −2Ce2x + x2 + y2 2 ,v´o.i C t `u y ´y .  y =0 BAI` TAˆ. P . . . 4.1.1. Gia’i c´acphuong tr`ınhvi phˆansau (da. ng d¯uavˆe` biˆe´nsˆo´ phˆanly): x + y x − y (xy2 −x)dx+(y+x2 y)dy =0; y0 +sin −sin =0; y0 =2x+y+4; 2 2 √ 2x2 5y y0 = y − x +1; y0 = ex+y−1; xy0 = ey −1; dx+ dy =0; 1+2x2 y2 +1 (1 + e2x)y2dy = exdx (biˆe´t y(0) = 0); y0 = ey−4x (biˆe´t y(1) = 1) . . 4.1.2. Gia’i c´acphuong tr`ınhvi phˆansau (da. ng d¯˘a’ ng cˆa´pcˆa´p 1): 2 0 y 0 y y 0 y 0 2xy y = − 2; y = e x + ; xy = y ln ; y = ; x2 x x x2 − y2 √ y y y x (x2+2xy)dx+xydy =0; xy0 = y− xy; y0 = 1+ln ; y0 = + ; x x x y
  46. 45 y y y y π y0 = + cos2 ; x3y0 = y(x2 + y2); y0 = + sin (biˆe´t y(1) = ); x x x x 2 y π y y2 xy0 − y = xtg (biˆe´t y(1) = ); y0 = + (biˆe´t y(−1) = 1); x 2 x x2 y 1 y 3 y0 = +   (biˆe´t y(−1) = 1); x 2 x . . 4.1.3. Gia’i c´acphuong tr`ınhvi phˆansau (da. ng tuyˆe´n t´ınhcˆa´p 1): y y0 +2y =4x; (1 + x2)y0 − 2xy =(1+x2)2; xy0 − = x; 1+x 2 xy0 + y = x2 cos x; y0 +2xy = xe−x ; y0 cos x + y sin x =1; 1 2 xy0−xy = (1+x2)ex; y0+exy = e2x; y0− y = x ln x; y0− y =4x2; x ln x x y y0 + xy =3x; y0 + =3x3; y0 +2y = cos x; y0 − 2y = sin x; x xy0 + y = ex (biˆe´t y(1) = 0); (x +1)xy0 − y = x(x +1) (biˆe´t y(1) = 0) II. Phu.o.ng tr`ınhvi phˆancˆa´p2 1. Kh´ainiˆe.m chung . . . . *Tago.i phuo ng tr`ınh vi phˆancˆa´p2l`aphuong tr`ınhc´oda.ng F (y00,y0,y,x) = 0 (II) hay 00 0 y = f(y ,y,x)(IIo) 0 00 trong d¯´o y l`ah`amsˆo´ theo biˆe´n x, c`on y ,y l`ad¯a.o h`amcˆa´p 1,2 cu’a y,v`anghiˆe.m cu’a phu.o.ng tr`ınh l`ah`am y = ψ(x) hay Φ(x, y) = 0 tho’a m˜anphu.o.ng tr`ınhd¯´o. . . * H`am y = ψ(x, C1,C2) ho˘a.cΦ(x, y, C1,C2)=0tho’a m˜anphuong tr`ınh(II)hay . . (IIo)v´oi C1,C2 l`ah˘a`ng sˆo´ t`uy´ytrong tˆa.p con n`aod¯´ocu’a R, v`av´oimˆo˜id¯iˆ`eu 0 0 . . kiˆe.n y(xo)=yo v`a y (xo)=yo ta t`ımd¯uo. c duy nhˆa´tc˘a.psˆo´ C10,C20 sao cho y = . . ψ(x, C10,C20) hay Φ(x, y, C10,C20) = 0 tho’a(II)hay(IIo)d¯uo. cgo.il`anghiˆe.m tˆo’ng qu´atcu’a c´acphu.o.ng tr`ınh d¯´o. *Nˆe´u y = ψ(y,C1,C2) hay Φ(x, y, C1,C2) = 0 l`anghiˆe.mtˆo’ng qu´atcu’a(II)hay . (IIo), cho C1 = C01,C2 = C02 v´oi C01,C02 l`ahai sˆo´ x´acd¯i.nh cu. thˆe’ th`ı y = . . . . ψ(x, C01,C02) hay Φ(x, y, C01,C02)=0d¯uo. cgo.il`anghiˆe.m riˆengcu’a phuo ng tr`ınh d¯´o. . . + (D- .inh l´ytˆo`nta.i v`aduy nhˆa´t nghiˆe.m): Trong phuong tr`ınh(IIo), nˆe´u h`am 0 . ’ 0 f(y ,y,x) liˆentu.c trong miˆe` n n`aod¯´och´uad¯iˆem (yo,yo,xo) th`ıtˆo`nta.imˆo.t nghiˆe.m 0 0 0 0 y = y(x) cu’a(IIo) sao cho y + o = y(xo),yo = y (xo) v`anˆe´u fy.fy0 c˜ung liˆentu.c . ’ 0 trong miˆ`ench´uad¯iˆem (yo,yo,xo) th`ınghiˆe.mˆa´y l`aduy nhˆa´t. . . . . 2. C´acloa.i phuo ng tr`ınh vi phˆancˆa´p 2 thu`o ng g˘a.p . . . . 2.1. Phuong tr`ınhvi phˆancˆa´p2gia’mcˆa´pd¯uo. c . . 00 0 + Phuong tr`ınhc´oda.ng y = f(x) (thiˆe´u y,y ) C´ach gia’i: t´ıch phˆan2 lˆa`n. . . V´ıdu. 1. Gia’iphuong tr`ınh: y00 = x +1.
  47. 46 x2 Ta c´o: y0 = Z (x +1)dx = + x + C , suy ra: 2 1 x2 x3 x2 y = Z  + x + C  dx = + + C x + C v´o.i C ,C t `u y ´y . 2 1 6 2 1 2 1 2 . . 00 0 + Phuong tr`ınhc´oda.ng y = f(y ,x) (thiˆe´u y) 0 00 0 0 . . C´ach gia’i: d¯˘a.t y = z (h`amtheo x) ⇒ y = z .Nˆen: z = f(z,x) l`aphuong 0 tr`ınh cˆa´p1cu’a z theo x, gia’i ra nghiˆe.mtˆo’ng qu´at z = ψ(x, C1), thay z = y , ta c´o: 0 . . y = ψ(x, C1) gia’i ra nghiˆe.mtˆo’ng qu´atcu’aphuong tr`ınhban d¯ˆa`u. . . V´ıdu. 2. Gia’iphuong tr`ınh: y00 = y0 + x. 0 00 0 0 . . D- ˘a.t y = z (h`amtheo x) ⇒ y = z , suy ra z − z = x.D- ˆayl`aphuong tr`ınhvi . phˆantuyˆe´n t´ınhcˆa´p1cu’a h`am z theo x v´oi p(x)=−1,q(x)=x nˆenc´onghiˆe.m: Z R p(x)dx  − R p(x)dx Z −x  x x z = q(x)e dx + C1 e = xe dx + C1 e = C1e − (x + 1). x2 Thay z = y0, ta c´o: y0 = C ex − (x +1)⇒ y = C ex − − x + C v´o.i C ,C t`uy´y. 1 1 2 2 1 2 . . 00 0 + Phuong tr`ınhc´oda.ng y = f(y,y ) (thiˆe´u x) 0 00 0 0 0 C´ach gia’i: d¯˘a.t y = z (h`amtheo y), d¯a.o h`amtheo x, ta c´o: y = zy · y = z · z, nˆen: z0 · z = f(y,z). . . 0 Gia’iphuong tr`ınh cˆa´p1cu’a z theo biˆe´n y, ta c´o: z = ψ(y,C1), thay z = y rˆo`i gia’i . . 0 . . tiˆe´pphuong tr`ınh y = ψ(y,C1) ta c´onghiˆe.mtˆo’ng qu´atcu’aphuong tr`ınhd¯˜acho. . . V´ıdu. 3. Gia’iphuong tr`ınh: (1 − y)y00 +2(y0)2 = 0 (1) dz D- ˘at y0 = z (theo y) ⇒ y00 = z0y0 = z0z (v´o.i z0 = ), ta c´o: . dy (1 − y)z0z +2z2 = 0 (2) 0 0 +Nˆe´u z ≡ 0 ⇒ z = 0: (2) tho’a m˜annˆen z ≡ 0 l`anghiˆe.mcu’a (2)⇒ y =0⇒ y = C1 . (v´oi C1 t`uy´y)l`anghiˆe.mcu’a (1) 0 . . +Nˆe´u1− y ≡ 0 ⇔ y ≡ 1 ⇒ y = 0: (1) tho’a m˜annˆen y = 1 l`anghiˆe.m (1) (tru`ong . ho.priˆeng cu’a nghiˆe.m y = C1) +Nˆe´u y 6≡ C1 ⇔ z 6≡ 0: dz dz 2dy (2)⇒ (1 − y) = −2z ⇒ = ⇒ ln |z| =2ln|y − 1| +ln|C | dy z y − 1 1 dy 1 Suy ra: z = y0 = C (y − 1)2 ⇒ = C dx ⇒− = C x + C . 1 (y − 1)2 1 y − 1 1 2  1 y = − +1;C1 =06 ,C2 t `u y ´y Vˆa.y (1) c´onghiˆe.m: C1x + C2  y = C1,C1 t `u y ´y . . . 2.2. Phuo ng tr`ınh vi phˆantuyˆe´nt´ınh cˆa´p2v´oihˆe. sˆo´ h˘a`ng
  48. 47 . . 00 0 . L`aphuong tr`ınh c´oda.ng y + py + qy = f(x) trong d¯´o p, q l`ah˘a`ng sˆo´ thu. c. * D- ˆo´i v´o.i phu.o.ng tr`ınhthuˆa` n nhˆa´t(f(x)=0): . . . 2 Gia’iphuong tr`ınhd¯˘a.c trung: k + pk + q = 0. (DT) . . . +Nˆe´u (DT) c´o2 nghiˆe.m thu. c phˆanbiˆe.t k1,k2 th`ınghiˆe.mtˆo’ng qu´atcu’aphuong tr`ınh thuˆa`n nhˆa´t l`a: k1x k2x y = C1e + C2e . . . +Nˆe´u (DT) c´onghiˆe.mk´ep k1 = k2 th`ınghiˆe.mtˆo’ng qu´atcu’aphuong tr`ınhthuˆa`n nhˆa´t l`a: k1x y =(C1 + C2x)e . . +Nˆe´u (DT) c´o2 nghiˆe.mph´uc k1 = α + βi,k2 = α − βi th`ınghiˆe.mtˆo’ng qu´atcu’a phu.o.ng tr`ınh thuˆa`n nhˆa´t l`a: αx y = e (C1 cos βx + C2 sin βx). . . . 00 0 * D- ˆo´iv´oi phuong tr`ınhkhˆongthuˆa` n nhˆa´t y + py + qy = f(x) (vˆe´ pha’i c´oda.ng d¯˘a.c biˆe.t): . . . . . . . . . Bu´o c1: Gia’iphuong tr`ınh thuˆa`n nhˆa´ttuong ´ung, t`ımnghiˆe.mtˆo’ng qu´atdu´o ida.ng: y = C1y1(x)+C2y2(x) . . ∗ . . Bu´o c2:T`ım nghiˆe.mriˆeng y cu’aphuong tr`ınhkhˆongthuˆa`n nhˆa´td¯ˆe’ suy ra nghiˆe.m y = y + y∗ ax . +Nˆe´u f(x) c´oda.ng Pn(x)e (Pn(x) l`ad¯ath´ucbˆa.c n): ∗ − Nˆe´u a khˆongpha’i l`anghiˆe.mcu’a (DT) th`ı y c´oda.ng: ∗ n n−1 ax y =(anx + an−1x + ···+ a1x + ao)e . ∗ − Nˆe´u a l`anghiˆe.md¯oncu’a (DT) th`ı y c´oda.ng: ∗ n n−1 ax y = x(anx + an−1x + ···+ a1x + ao)e ∗ − Nˆe´u a l`anghiˆe.mk´epcu’a (DT) th`ı y c´oda.ng: ∗ 2 n n−1 ax y = x (anx + an−1x + ···+ a1x + ao)e ax . +Nˆe´u f(x) c´oda.ng e [Pn(x) cos bx + Qm(x) sin bx]: (Pn(x),Qm(x) l`ac´acd¯ath´uc bˆa.c n, m), d¯˘a.t h = max{m, n}: ∗ − Nˆe´u a + bi khˆongpha’i l`anghiˆe.mcu’a (DT) th`ı y c´oda.ng: ∗ h h ax y = (ahx + ···+ a1x + ao) cos bx +(bhx + ···+ b1x + bo) sin bx e ∗ − Nˆe´u a + bi l`anghiˆe.mcu’a (DT) th`ı y c´oda.ng: ∗ h h ax y = x. (ahx + ···+ a1x + ao) cos bx +(bhx + ···+ b1x + bo) sin bx e . . . ∗0 ∗00 D- ˆe ’ x´acd¯i.nh c´acsˆo´ ai,bi o’ trˆen, ta d`ungphuong ph´aphˆe. sˆo´ bˆa´td¯i.nh: t´ınh y ,y ∗ ∗0 ∗00 . . rˆo`i thay y ,y ,y v`aophuong tr`ınhkhˆongthuˆa`n nhˆa´t, d¯ˆo`ng nhˆa´t hai vˆe´ v`agia’ihˆe. . . phuong tr`ınhtheo ai,bi.
  49. 48 . . + Nguyˆenl´y chˆo`ng chˆa´t nghiˆe.m: Nˆe´u y1(x),y2(x) lˆa` nluo. t l`anghiˆe.m riˆengcu’a . . 00 0 00 0 c´acphuong tr`ınh y + p(x).y + q(x).y = f1(x) v`a y + p(x).y + q(x).y = f2(x) th`ı 00 0 y1(x)+y2(x) l`anghiˆe.m riˆengcu’a y + p(x).y + q(x).y = f1(x)+f2(x). . . V´ıdu. 1. Gia’iphuong tr`ınh: y00 − 2y0 − 3y = e4x (1) k = −1 . . . 2  1 . . Phuong tr`ınhd¯˘a.c trung k − 2k − 3 = 0 c´onghiˆe.m nˆen phuong tr`ınh k2 =3 00 0 −x 3x thuˆa`n nhˆa´t: y − 2y − 3y = 0 c´onghiˆe.m y = C1e + C2e , C1,C2 t`uy´y. ax . Vˆe´ pha’i (1) c´oda.ng Pn(x)e v´oi n =0,a =4=6 k1,k2 nˆennghiˆe.mriˆeng c´oda.ng ∗0 4x ∗ 4x  y =4aoe y = aoe , suy ra: ∗00 4x . Thay v`ao(1), ta c´o: y =16aoe 1 16a e4x − 8a e4x − 3a e4x = e4x ⇒ a = , suy ra: o o o o 5 1 y = y + y∗ = C e−x + C e3x + e4x, ∀C ,C . 1 2 5 1 2 . . V´ıdu. 2. Gia’iphuong tr`ınh: y00 − 2y0 + y =6xex (2) . . . 2 . . Phuong tr`ınhd¯˘a.c trung k − 2k + 1 = 0 c´onghiˆe.mk´epk1 = k2 = 1 nˆenphuong 00 0 x tr`ınh thuˆa`n nhˆa´t: y − 2y + y = 0 c´onghiˆe.m y =(C1x + C2)e , C1,C2 t `u y ´y . ax . Vˆe´ pha’i (2) c´oda.ng Pn(x)e v´oi n =1,a =1=k1 = k2 nˆennghiˆe.mriˆeng c´oda.ng ∗0 3 2 x ∗ 2 x  y =[a1x +(3a1 + ao)x +2aox]e y = x (a1x + ao)e , suy ra: ∗00 3 2 x . y =[a1x +(6a1 + ao)x +(6a1 +4ao)x +2ao]e  6a1 =6  a1 =1 ∗ Thay v`ao(2), ta c´o: ⇒ ⇒ y = x3ex nˆen(2) c´onghiˆe.m: 2ao =0 ao =0 ∗ x 3 x 3 x y = y + y =(C1x + C2)e + x e =(C1x + C2 + x )e , ∀C1,C2 . . V´ıdu. 3. Gia’i p[huong tr`ınh: y00 + y =4xex (3) . . . 2 . . Phuong tr`ınhd¯˘a.c trung k + 1 = 0 c´onghiˆe.m k = ±i nˆen phuong tr`ınhthuˆa`n 00 0x nhˆa´t: y + y = 0 c´onghiˆe.m y = e (C1 sin x + C2 cos x)=C1 sin x + C2 cos x, C1,C2 t `u y ´y . ax . Vˆe´ pha’i (3) c´oda.ng Pn(x)e v´oi n =1,a=1=6 k1,k2 nˆennghiˆe.mriˆeng c´oda.ng: ∗0 x ∗ x  y =(a1x + a1 + ao)e y =(a1x + ao)e , suy ra: ∗00 x . y =(a1x +2a1 + ao)e Thay v`ao(3), ta c´o:2a1x +2a1 +2ao =4x.D- `ˆong nhˆa´t2vˆe´:  a1 =2  a1 =2 ∗ ⇒ ⇒ y =(2x − 2)ex nˆen(2) c´onghiˆe.m: a1 + ao =0 ao = −2 ∗ x y = y + y =(C1 sin x + C2 cos x)+(2x − 2)e , ∀C1,C2 . . V´ıdu. 4. Gia’iphuong tr`ınh: y00 − y =2ex − x2 (4) . . . 2 . . Phuong tr`ınhd¯˘a.c trung k − 1 = 0 c´onghiˆe.m k = ±1 nˆen phuong tr`ınhthuˆa`n 00 x −x nhˆa´t: y − y = 0 c´onghiˆe.m y = C1e + C2e , C1,C2 t `u y ´y .
  50. 49 Theo nguyˆenl´ychˆo`ng chˆa´t nghiˆe.m, nghiˆe.mriˆeng cu’a (4) l`atˆo’ng hai nghiˆe.mriˆeng y00 − y =2ex (4a) cu’a hai phu.o.ng tr`ınhsau:  y00 − y = −x2 (4b) ax . Vˆe´ pha’i (4a) c´oda.ng Pn(x)e v´oi n =0,a =1=k1 nˆennghiˆe.mriˆeng c´oda.ng: ∗0 x ∗ x x  y1 =(aox + ao)e y1 = x(ao)e = aoxe , suy ra: ∗00 x . y1 =(aox +2ao)e x x ∗ x Thay v`ao(4a), ta c´o:(aox +2ao − aox)e =2e ⇒ ao = 1, nˆen y1 = xe ax . Vˆe´ pha’i (4b) c´oda.ng Pn(x)e v´oi n =2,a=0=6 k1,k2 nˆennghiˆe.mriˆeng c´oda.ng:  a2 =1 y∗0 =2a x + a ∗ 2  2 2 1 (4⇒b)  ⇒ ∗ 2 y2 = a2x + a1x + ao, suy ra: ∗00 a1 =0 y2 = x +2. y2 =2a2  ao =2 ∗ ∗ ∗ x 2 ’ Suy ra nghiˆe.mriˆeng cu’a (4) l`a: y = y1 + y2 = xe + x + 2 v`anghiˆe.mtˆong qu´at: ∗ x −x x 2 y = y + y = C1e + C2e + xe + x +2, ∀C1,C2 BAI` TAˆ. P . . 4.2.1. Gia’i c´acphuong tr`ınhvi phˆancˆa´p 2 sau (da.ng gia’mcˆa´p): y0 xy00 = y0; xy00 = y0 ln ; x2y00 = y02; y3y00 =1; y00(ex +1)+y0 =0; x (x ln x)y00 − y0 =0; x2y00 +3xy0 =0; 1+y02 =2yy00; yy00 − y02 =0 . . . 4.2.2. Gia’i c´acphuong tr`ınhvi phˆancˆa´p 2 sau (da.ng tuyˆe´n t´ınhv´oihˆe. sˆo´ h˘a`ng): y00 −2y0 +y = ex; y00 −5y0 +6y = e2x; y00 −2y0 +2y =2x2; y00 +y0 −2y = xex; y00 − 3y0 +2y = ex(2x +3); y00 − y0 − x; y00 − 6y0 +5y =3ex +5x2; y00 − 5y0 =3x2 + sin 5x; y00 + y = sin x cos 3x; y00 − 2y0 − 3y =3− 4ex -ooOoo-
  51. 50 T`ailiˆe.u tham kha’o Tiˆe´ng Viˆe.t . . . 1. Luong H`a.2002. Gi´aotr`ınhH`amnhiˆe` ubiˆe´nsˆo´. Trung tˆanD- `ao ta.oT`u Xa, D- a.i ho.cHuˆe´. . 2. LˆeTu. Hy’. 1974. Gi´aotr`ınh Gia’i t´ıch, Viˆe.nD- a.iho.cHuˆe´. . 3. LˆeViˆe´t Ngu, Phan v˘anDanh. 2000. To´anho.c cao cˆa´p (chuyˆen ng`anhSinh, Y, NˆongLˆam).NXB Gi´aodu.c. 4. Th´aiXuˆanTiˆen,D- ˘a.ng Ngo.cDu. c. 2002. To´ancao cˆa´p (phˆa`n Gia’i t´ıch). Trung . tˆamD- `aota.oT`u Xa, D- a.iho.cHuˆe´. . 5. Nguyˆ˜enD- `ınhTr´ı v`acˆo.ng su. . 1983. To´anho.c cao cˆa´p. Tˆa.p I,II,III. NXB D- a.iho.c v`aTHCN. Tiˆe´ng Anh 6. P.E. Danko, A.G. Popov. 1996. B`aitˆa.p To´ancao cˆa´p (ba’ndi.ch). NXB Gi´aodu. c. 7. G.Dorofeev, M.Potapov, N.Rozov. 1976. Elementary mathematics. Mir Publisher. 8. Liasko. 1979. Gia’i t´ıch to´anho.c (ba’ndi.ch). Tˆa.p I. NXB D- a.iho.c v`aTHCN.