Giáo trình Đại số sơ cấp (Phần 1)
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Đại số sơ cấp (Phần 1)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- giao_trinh_dai_so_so_cap_phan_1.pdf
Nội dung text: Giáo trình Đại số sơ cấp (Phần 1)
- HỘI NHỮNG NGƯỜI YÊU THÍCH TOÁN HỌC VIETMATHS.NET ĐẠI SỐ SƠ C ẤP Giáo trình đào tạo giáo viên trung học hệ Đại học, Cao đẳng sư phạm ( Tái bản lần thứ 10) HOÀNG HUY SƠN Bấm nút Like hoặc G+1 để ủng hộ chúng tôi. Chân thành cám ơn. Website: Facebook: GooglePlus:
- LỜI NÓI ĐẦ U Tài li ệu “Đại s ố s ơ c ấp” được vi ết nh ằm ph ục v ụ sinh viên chuyên ngành S ư ph ạm Toán. Nội dung c ủa tài li ệu đề c ập đế n các v ấn đề : Hàm s ố và đồ th ị; Ph ươ ng trình và h ệ ph ươ ng trình; B ất đẳ ng th ức và b ất ph ươ ng trình. Một s ố nội dung đề c ập trong tài li ệu, sinh viên đã được h ọc sơ l ược trong ch ươ ng trình Toán ph ổ thông. Tuy nhiên, để tr ở thành th ầy giáo d ạy t ốt môn Toán khi ra tr ường, đòi h ỏi sinh viên ph ải n ắm v ững lý thuy ết và hoàn thi ện các ph ươ ng pháp gi ải toán s ơ c ấp. Xu ất phát t ừ yêu c ầu trên, chúng tôi c ố g ắng trình bày t ươ ng đối có h ệ th ống v ề c ơ s ở lý thuy ết c ủa các khái ni ệm: Hàm s ố; Ph ươ ng trình; B ất đẳ ng th ức; B ất ph ươ ng trình; H ệ ph ươ ng trình. Các n ội dung chi ếm m ột ph ần quan tr ọng trong ch ươ ng trình Toán ph ổ thông nh ư: Phươ ng trình, b ất ph ươ ng trình vô t ỉ; Phươ ng trình, b ất ph ươ ng trình m ũ và logarit; Phươ ng trình l ượng giác, chúng tôi trình bày thành các ch ươ ng riêng để sinh viên d ễ nghiên c ứu. Tài li ệu được trình bày thành 6 ch ươ ng: 1. Ch ươ ng 1: Hàm s ố; 2. Ch ươ ng 2: Ph ươ ng trình – H ệ ph ươ ng trình; 3. Ch ươ ng 3: B ất đẳ ng th ức – B ất ph ươ ng trình; 4. Ch ươ ng 4: Ph ươ ng trình, b ất ph ươ ng trình vô t ỉ; 5. Ch ươ ng 5: Ph ươ ng trình, b ất ph ươ ng trình m ũ và logarit; 6. Ch ươ ng 6: Ph ươ ng trình l ượng giác. Một yêu c ầu h ết s ức quan tr ọng trong gi ải toán là: Vi ệc trình bày bài giải ph ải ch ặt ch ẽ và logic. Để rèn cho sinh viên nh ững k ỹ n ăng đó, chúng tôi c ố g ắng đưa vào tài li ệu nhi ều ví d ụ về th ực hành gi ải toán. Các ví d ụ chi ếm m ột kh ối l ượng đáng k ể trong tài li ệu, giúp sinh viên có th ể t ự nghiên c ứu tài li ệu tr ước khi đế n l ớp. Điều này phù h ợp v ới ph ươ ng th ức đào t ạo theo h ệ th ống tín ch ỉ ở tr ường Đạ i h ọc An Giang t ừ n ăm h ọc 2009 – 2010. Cu ối m ỗi ch ươ ng có h ệ th ống bài t ập đã được lựa ch ọn, nhi ều v ề s ố l ượng, đủ các m ức độ t ừ d ễ đế n khó ( đối v ới m ột s ố bài khó, chúng tôi có h ướng d ẫn cách gi ải), yêu c ầu sinh viên tự gi ải để rèn k ỹ n ăng tìm l ời gi ải m ột bài toán. V ới kh ối l ượng quy đị nh là 5 đơ n v ị h ọc trình, tài li ệu không th ể đề c ập h ết t ất c ả các d ạng toán hay g ặp c ủa các n ội dung v ề ph ươ ng trình, bất ph ươ ng trình và h ệ ph ươ ng trình nh ư m ột s ố tài li ệu khác. Chúng tôi mong mu ốn ở sinh viên là t ự t ổng k ết và đúc rút cho mình nh ững k ỹ n ăng gi ải toán thông qua t ự gi ải các bài t ập trong tài li ệu. Cu ối cùng, chúng tôi r ất mong nh ận được các ý ki ến đóng góp quí báu cho n ội dung c ũng nh ư hình th ức trình bày trong tài li ệu của các b ạn đồ ng nghi ệp trong B ộ môn Toán và H ội đồng Khoa h ọc Khoa S ư ph ạm c ũng nh ư các b ạn sinh viên để tài li ệu này có th ể được hoàn ch ỉnh tốt hơn. An Giang, tháng 02 n ăm 2009 Tác gi ả VIETMATHS.NET 2
- MỤC L ỤC Trang LỜI NÓI ĐẦ U 1 BẢNG M ỘT S Ố KÍ HI ỆU VÀ CH Ữ VI ẾT T ẮT S Ử D ỤNG TRONG TÀI LI ỆU 4 CH ƯƠ NG I. HÀM S Ố 5 §1. KHÁI NI ỆM HÀM S Ố 5 1. Định ngh ĩa hàm s ố 5 2. Đồ th ị c ủa hàm s ố 6 3. Hàm s ố đơn điệu 6 4. Hàm s ố ch ẵn, hàm s ố l ẻ 8 5. Hàm s ố tu ần hoàn 9 6. Hàm s ố h ợp 10 7. Hàm s ố ng ược 11 8. Hàm s ố s ơ c ấp c ơ b ản 13 §2. M ỘT S Ố PHÉP BI ẾN ĐỔ I ĐỒ TH Ị 18 1. Tr ục đố i x ứng, tâm đố i x ứng c ủa đồ th ị 18 2. Phép đối x ứng qua tr ục t ọa độ 21 3. Phép t ịnh ti ến song song tr ục tung 21 4. Phép t ịnh ti ến song song tr ục hoành 21 5. M ột s ố ví d ụ 22 6. Đồ th ị c ủa m ột s ố hàm s ố ch ứa d ấu giá tr ị tuy ệt đố i 23 §3. GIÁ TR Ị L ỚN NH ẤT VÀ GIÁ TR Ị NH Ỏ NH ẤT C ỦA HÀM S Ố 28 1. Định ngh ĩa 28 2. M ột s ố ph ươ ng pháp tìm giá tr ị l ớn nh ất, giá tr ị nh ỏ nh ất c ủa hàm s ố 28 3. M ột s ố ví d ụ 29 BÀI T ẬP CH ƯƠ NG I 37 CH ƯƠ NG II. PH ƯƠ NG TRÌNH – H Ệ PH ƯƠ NG TRÌNH 42 §1. CÁC KHÁI NI ỆM C Ơ B ẢN 42 1. Ph ươ ng trình 42 2. H ệ ph ươ ng trình – Tuy ển ph ươ ng trình 45 §2. PH ƯƠ NG TRÌNH B ẬC NH ẤT, B ẬC HAI M ỘT ẨN 46 1. Ph ươ ng trình b ậc nh ất m ột ẩn 46 2. Ph ươ ng trình b ậc hai m ột ẩn 50 3. M ột s ố ph ươ ng trình b ậc bốn có th ể đưa v ề ph ươ ng trình b ậc hai m ột ẩn 55 §3. H Ệ PH ƯƠ NG TRÌNH 59 1. H ệ ph ươ ng trình g ồm m ột ph ươ ng trình b ậc nh ất và m ột ph ươ ng trình b ậc hai 59 2. H ệ ph ươ ng trình đẳng c ấp b ậc hai 61 3. H ệ ph ươ ng trình đối x ứng 63 4. Gi ải m ột s ố h ệ khác 71 BÀI T ẬP CH ƯƠ NG II 78 CH ƯƠ NG III. B ẤT ĐẲ NG TH ỨC – B ẤT PH ƯƠ NG TRÌNH 85 §1. ĐẠI C ƯƠ NG V Ề B ẤT ĐẲ NG TH ỨC 85 1. Định ngh ĩa 85 2. Tính ch ất c ơ b ản c ủa b ất đẳ ng th ức 85 3. M ột s ố b ất đẳ ng th ức quan tr ọng 86 4. Các ph ươ ng pháp ch ứng minh b ất đẳ ng th ức 86 §2. B ẤT PH ƯƠ NG TRÌNH 96 1. Định ngh ĩa 96 2. S ự t ươ ng đươ ng c ủa các b ất ph ươ ng trình 97 3. Ứng d ụng c ủa giá tr ị l ớn nh ất và giá tr ị nhỏ nh ất vào vi ệc gi ải ph ươ ng trình và b ất 3
- ph ươ ng trình 97 §3. B ẤT PH ƯƠ NG TRÌNH B ẬC NH ẤT, B ẬC HAI M ỘT ẨN 98 1. B ất ph ươ ng trình b ậc nh ất m ột ẩn 98 2. B ất ph ươ ng trình b ậc hai m ột ẩn 101 BÀI T ẬP CH ƯƠ NG III 111 CH ƯƠ NG IV. PH ƯƠ NG TRÌNH, B ẤT PH ƯƠ NG TRÌNH VÔ T Ỉ 116 §1. PH ƯƠ NG TRÌNH VÔ T Ỉ 116 1. Định ngh ĩa và các định lý 116 2. Các ph ươ ng pháp gi ải ph ương trình vô t ỉ 117 §2. B ẤT PH ƯƠ NG TRÌNH VÔ T Ỉ 132 1. Định ngh ĩa và các định lý 132 2. Các ph ươ ng pháp gi ải b ất ph ươ ng trình vô t ỉ 133 BÀI T ẬP CH ƯƠ NG IV 140 CH ƯƠ NG V. PH ƯƠNG TRÌNH, B ẤT PH ƯƠ NG TRÌNH M Ũ VÀ LOGARIT 146 §1. NH ẮC L ẠI KHÁI NI ỆM LOGARIT 146 1. Định ngh ĩa 146 2. Các tính ch ất c ủa logarit 146 §2. PH ƯƠ NG TRÌNH, B ẤT PH ƯƠ NG TRÌNH M Ũ 147 1. Định ngh ĩa 147 2. M ột s ố ph ươ ng pháp gi ải ph ươ ng trình m ũ 147 3. M ột s ố ph ươ ng pháp gi ải b ất ph ươ ng trình m ũ 158 §3. PH ƯƠ NG TRÌNH, B ẤT PH ƯƠ NG TRÌNH LOGARIT 166 1. Định ngh ĩa 166 2. M ột s ố ph ươ ng pháp gi ải ph ươ ng trình logarit 166 3. M ột s ố ph ươ ng pháp giải b ất ph ươ ng trình logarit 177 BÀI T ẬP CH ƯƠ NG V 184 CH ƯƠ NG VI. PH ƯƠ NG TRÌNH L ƯỢNG GIÁC 192 §1. CÁC CÔNG TH ỨC BI ẾN ĐỔ I L ƯỢNG GIÁC 192 1. Công th ức c ộng 192 2. Công th ức nhân 192 3. Công thức bi ến đổ i tích thành t ổng 193 4. Công thức bi ến đổ i t ổng thành tích 193 §2. PH ƯƠ NG TRÌNH L ƯỢNG GIÁC C Ơ B ẢN 194 1. Ph ươ ng trình sin x= a 194 2. Ph ươ ng trình cos x= a 195 3. Ph ươ ng trình tan x= a 195 4. Ph ươ ng trình cot x= a 195 §3. M ỘT S Ố PH ƯƠNG TRÌNH L ƯỢNG GIÁC TH ƯỜNG G ẶP 196 1. Ph ươ ng trình b ậc nh ất, b ậc hai, b ậc cao đối v ới m ột hàm s ố l ượng giác 196 2. Ph ươ ng trình b ậc nh ất đố i v ới sin x và cos x 197 3. Ph ươ ng trình thu ần nh ất b ậc hai đố i v ới sin x và cos x 198 4. Ph ươ ng trình đối x ứng đố i v ới sin x và cos x 200 §4. CÁC PH ƯƠ NG TRÌNH L ƯỢNG GIÁC KHÁC 202 1. S ử d ụng công th ức h ạ b ậc, góc nhân đôi, góc nhân ba 202 2. D ạng phân th ức VIETMATHS.NET 208 3. D ạng ch ứa tan x và cot x 209 4. M ột s ố ph ươ ng trình gi ải b ằng ph ươ ng pháp đặc bi ệt 213 5. M ột s ố ph ương trình ch ứa tham s ố 214 BÀI T ẬP CH ƯƠ NG VI 217 TÀI LI ỆU THAM KH ẢO 220 4
- BẢNG M ỘT S Ố KÍ HI ỆU VÀ CH Ữ VI ẾT T ẮT S Ử D ỤNG TRONG TÀI LI ỆU ℕ : Tập h ợp các s ố t ự nhiên: {0;1;2; } . ℤ : T ập h ợp các s ố nguyên: { ;− 2; − 1;0;1;2; } . a ℚ : T ập h ợp các s ố h ữu t ỉ: /,a b∈ℤ , b ≠ 0. b ℝ : T ập h ợp các s ố th ực. ℝ* : T ập h ợp các s ố th ực khác không. ℝ+ : T ập h ợp các s ố th ực d ươ ng. n ∑:Phép l ấy t ổng t ừ 1 đế n n. 1 { / } : Tập h ợp. Tf : Tập (mi ền) giá tr ị c ủa hàm s ố f . Max f( x ) : Giá tr ị l ớn nh ất c ủa hàm s ố f trên tập D. x∈ D Min f( x ) : Giá tr ị nh ỏ nh ất c ủa hàm s ố f trên tập D. x∈ D ∈: Thu ộc. ⊆, ⊂ : Tập con. ∅ : T ập h ợp r ỗng. ∀ : M ọi. ≠: Khác. \: Hi ệu c ủa hai t ập h ợp. ∪ : H ợp c ủa hai t ập h ợp. ∩ :Giao c ủa hai t ập h ợp. n ∪ :Phép l ấy h ợp t ừ 1 đế n n. 1 n ∩ :Phép l ấy giao t ừ 1 đế n n. 1 ∨ : Ho ặc (tuy ển c ủa hai m ệnh đề ). ⇒: Phép kéo theo, ph ươ ng trình h ệ qu ả. ⇔: Phép t ươ ng đươ ng (khi và ch ỉ khi), ph ươ ng trình t ươ ng đươ ng. Đpcm: K ết thúc ch ứng minh, điều ph ải ch ứng minh. 5
- CH ƯƠ NG I. HÀM S Ố §1. KHÁI NI ỆM HÀM S Ố 1. Định ngh ĩa Gi ả s ử X và Y là hai t ập h ợp tùy ý. N ếu có m ột quy tắc f cho t ươ ng ứng m ỗi x∈ X với m ột và ch ỉ m ột y∈ Y thì ta nói r ằng f là m ột hàm t ừ X vào Y, kí hi ệu f: X→ Y x֏ y= fx( ) Nếu X, Y là các t ập h ợp s ố thì f được g ọi là m ột hàm s ố. Trong ch ươ ng này chúng ta ch ỉ xét các hàm s ố th ực c ủa các bi ến s ố th ực, ngh ĩa là X⊆ℝ; Y ⊆ ℝ . X được g ọi là tập xác đị nh (hay là mi ền xác đị nh ) c ủa hàm s ố f . (Ng ười ta hay dùng kí hi ệu tập xác đị nh c ủa hàm s ố là D). S ố th ực x∈ X được g ọi là bi ến s ố độ c l ập (g ọi t ắt là bi ến s ố hay đố i s ố). S ố th ực y= fx( ) ∈ Y được g ọi là giá tr ị c ủa hàm s ố f t ại điểm x. T ập h ợp t ất c ả các giá tr ị f( x ) khi x l ấy m ọi s ố th ực thu ộc t ập h ợp X g ọi là tập giá tr ị (mi ền giá tr ị) c ủa hàm s ố f và được kí hi ệu là Tf , (nh ư v ậy Tf ={ fxxX( ) | ∈} = fX ( )). Hi ển nhiên Tf ⊆ Y . Chú ý r ằng Tf có th ể là m ột t ập h ợp con th ực s ự c ủa Y ho ặc b ằng tập Y. Trong nhi ều tr ường h ợp, ng ười ta cho hàm s ố f d ưới d ạng x֏ f( x ) ho ặc y= f( x ) mà không nêu rõ t ập xác đị nh X và t ập h ợp Y ch ứa t ập các giá tr ị c ủa f . Khi đó, ta hi ểu r ằng Y = ℝ và X là t ập h ợp các s ố th ực x ∈ ℝ sao cho quy t ắc đã cho thì f( x ) t ồn t ại. Ví d ụ 1. Cho hàm s ố y= fx( ) = x 2 + 1. Theo cách hi ểu trên thì Y = ℝ; t ập xác đị nh c ủa f là 2 D = ℝ, t ập các giá tr ị c ủa f là Tf ={ x +1| x ∈ℝ} =[ 1; +∞ ) . 1 Ví d ụ 2. Cho hàm s ố f() x = . Khi đó, t ập xác đị nh D = ℝ \{ 0} , tập giá tr ị là T = ℝ \{ 0} . x f Ví d ụ 3 . Cho hàm s ố f() x=1 − x 2 . Tập xác đị nh D=[ −1;1] , T f = [ 0;1] . Ví d ụ 4. Tìm t ập giá tr ị c ủa các hàm s ố x2 − x + 1 ay.= f() x = 2 ; x+ x + 1 sinx+ 2cos x + 1 by.= f() x = . sinx+ cos x VIETMATHS.NET + 2 Gi ải. x2 − x + 1 a. y = . Hàm s ố có t ập xác đị nh D = ℝ. x2 + x + 1 6
- x2 − x + 1 Gi ả s ử y∈ T . Khi đó y = (1) có nghi ệm đố i v ới x . 0 f 0 x2 + x + 1 2 2 2 (1) ⇔yxx0 ( ++=−+⇔ 1) xx 1( y0 − 1) xy +( 0 + 1) xy +−= 0 102.( ) Xét y0−=⇔=10 y 0 1;2( ) ⇔ 20 xx =⇔= 0. Vậy 1∈Tf . Xét y0−≠1 0 ⇔ y 0 ≠ 1. Khi đó, (2) có nghi ệm khi và ch ỉ khi 2 2 1 ()()yy+14 − − 10 ≥⇔− 31030 yy2 + −≥⇔≤≤ y 3. 00 003 0 1 Vậy T = [ ;3]. f 3 b. Tập xác đị nh c ủa hàm s ố đã cho là D = ℝ. C ũng t ươ ng t ự nh ư câu a. y0 thu ộc t ập giá tr ị sinx+ 2cos x + 1 của hàm s ố đã cho khi và ch ỉ khi y = ()1 có nghi ệm đố i v ới x 0 sinx+ cos x + 2 (1) ⇔yxx0 ( sin ++=+ cos 2) sin xx 2cos +⇔− 1( y0 1sin) xy +−( 0 2cos) xy =− 12. 0 (1) có nghi ệm khi và ch ỉ khi 2 2 2 2 ()()()yy00−1 + − 212 ≥− yyy 000 ⇔+−≤⇔−≤≤ 202 y 0 1. Vậy Tf =[ − 2;1] . 2x Ví d ụ 5. Tìm t ập giá tr ị c ủa hàm s ố y= f( x ) = cos . 1+ x2 Tập xác đị nh c ủa hàm s ố là D = ℝ. 2x Đặt t = , xem t là hàm s ố c ủa bi ến x, áp d ụng ph ươ ng pháp đã trình bày ở ví d ụ 4.a. ta 1+ x2 2x được v ới x ∈ℝ thì t ∈[ − 1;1]. Mi ền giá tr ị c ủa hàm s ố y= f( x ) = cos trên t ập xác đị nh 1+ x2 D = ℝ c ũng chính là mi ền giá tr ị c ủa hàm s ố y= cos t v ới t ∈[ − 1;1]. T ừ đó hàm s ố 2x y= f() x = cos có t ập giá tr ị là đoạn [cos1;1 ] . 1+ x2 2. Đồ th ị c ủa hàm s ố Cho hàm s ố y= f( x ) có t ập xác đị nh D, ta g ọi t ập h ợp các điểm ( x; f( x )) v ới ∀x ∈ D là đồ th ị c ủa hàm số y= f( x ). Vi ệc bi ểu di ễn các điểm ( x; f( x )) thu ộc đồ th ị c ủa hàm s ố y= f( x ) lên m ặt ph ẳng t ọa độ Oxy g ọi là v ẽ đồ th ị c ủa hàm s ố. Chú ý r ằng m ột đường (ζ) ( đường cong ho ặc đường th ẳng) trong m ặt ph ẳng t ọa độ ch ỉ có th ể là đồ th ị c ủa m ột hàm s ố nào đó, n ếu nó c ắt m ột đường th ẳng cùng ph ươ ng v ới tr ục Oy tại không quá tại một điểm. 7
- 3. Hàm s ố đơn điệu 3.1. Định ngh ĩa. Cho hàm s ố y= f( x ) có t ập xác đị nh là t ập D, kho ảng (a; b ) là t ập con c ủa D. Khi đó ta có Hàm s ố y= f( x ) g ọi là đồng bi ến (hay tăng ) trên kho ảng (a; b ) , n ếu với ∀xx12,;, ∈( abxx) 12 fx( 2 ) . Một hàm s ố đồ ng bi ến ho ặc ngh ịch bi ến trên kho ảng (a; b ) thì ta nói hàm s ố đơ n điệu trên kho ảng đó. 3.2. M ột s ố ví d ụ Ví d ụ 1. Hàm s ố y= x 3 đồng bi ến trên toàn b ộ t ập xác đị nh ℝ. 3x + 1 Ví d ụ 2. Hàm s ố y = ngh ịch bi ến trên t ừng kho ảng xác đị nh (−∞;2) ;( 2; +∞ ) . x − 2 Dựa vào định ngh ĩa 3.1, d ễ dàng ch ứng minh được các tính ch ất sau 3.3. Tính ch ất 3.3.1. N ếu hàm s ố y= f( x ) đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) , thì hàm s ố y= fx( ) + c ( c là h ằng s ố) c ũng đồ ng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) . 3.3.2. N ếu hàm s ố y= f( x ) đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) , thì hàm s ố y= kf( x ) đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) n ếu k > 0 ; hàm s ố y= kf( x ) ngh ịch bi ến ( đồ ng bi ến) trên kho ảng (a; b ) n ếu k < 0. 3.3.3. N ếu hàm s ố y= f( x ) và y= g( x ) đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) thì hàm s ố y= fx( ) + gx( ) đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) . 3.3.4. N ếu hàm s ố y= f( x ) và y= g( x ) không âm trên kho ảng (a; b ) và cùng đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) , thì hàm s ố y= fxgx( ). ( ) đồng bi ến (ngh ịch bi ến) trên kho ảng (a; b ) . Chú ý. Đồ th ị c ủa hàm s ố đồ ng bi ến ho ặc ngh ịch bi ến trên kho ảng (a; b ) c ắt đường th ẳng cùng ph ươ ng v ới tr ục Ox nhi ều nh ất t ại m ột điểm. Gi ả s ử hàm s ố y= f( x ) đồng bi ến trên kho ảng (a; b ) ; hàm s ố y= g( x ) ngh ịch bi ến trên kho ảng (a; b ) . Khi đóVIETMATHS.NET trên kho ảng (a ; b ), đồ th ị c ủa các hàm s ố y= f( x ) và y= g( x ) cắt nhau không quá tại một điểm. Áp d ụng. Tìm x th ỏa mãn 5x−2 = 3 − x . Để ý r ằng hàm s ố y= f( x ) = 5x−2 là hàm s ố đồ ng bi ến trên ℝ , còn hàm s ố ygx=( ) =3 − x ngh ịch bi ến trên ℝ . 8
- Dễ th ấy x = 2 th ỏa mãn ph ươ ng trình đã cho. V ậy, x = 2 là nghi ệm duy nh ất c ủa ph ươ ng trình. 4. Hàm s ố ch ẵn, hàm s ố l ẻ 4.1. Định ngh ĩa. Cho hàm s ố y= f( x ) có t ập xác đị nh trên D. Hàm s ố f g ọi là hàm s ố ch ẵn n ếu v ới m ọi x∈ D , ta có −x ∈ D và f(− x) = fx( ). Hàm s ố f g ọi là hàm s ố l ẻ n ếu v ới m ọi x∈ D , ta có −x ∈ D và f(− x) = − fx( ). 4.2. M ột s ố ví d ụ Ví d ụ 1. Xét tính ch ẵn, l ẻ c ủa hàm s ố yfx=( ) = x +−−1 1 x . Tập xác đị nh c ủa hàm s ố là [−1;1 ] nên d ễ th ấy ∀x, x ∈ [ − 1;1]⇒ − x ∈ [ − 1;1] và fx()−=11 −− x +=− x( 11 +− x − xfx) =− () . Vậy f là hàm s ố l ẻ. x2 +1 Ví d ụ 2. Xét tính ch ẵn, l ẻ c ủa hàm s ố y= f() x = . x +1 Tập xác đị nh D =ℝ \{ − 1} . Ta có 1∈ D nh ưng −1 ∉ D , nên hàm s ố đã cho không ph ải là hàm s ố ch ẵn c ũng nh ư hàm s ố lẻ. Ví d ụ 3. Xét tính ch ẵn, l ẻ c ủa hàm s ố yfx=() = xx2 +++1 xx 2 −+ 1. Tập xác đị nh D = ℝ, nên ∀xD ∈ ⇒ − xD ∈ . Ta có 2 2 ∀∈xDfx,()()() −=− x +−++− x 1()() x −−+= x 111. xx2 −++ xx 2 ++= fx() Vậy hàm s ố đã cho là hàm s ố ch ẵn. Ví d ụ 4. Xét tính ch ẵn, l ẻ c ủa hàm s ố yfx=( ) = x2 − 4 x . Tập xác đị nh D = ℝ, do đó x∈ D thì −x ∈ D . Nh ưng f(1) =− 3 ; f ( −= 1) 5, nên f(1) ≠ ± f ( − 1) . Vậy, f không ph ải hàm s ố ch ẵn c ũng nh ư hàm s ố l ẻ. 4.3. Đồ th ị c ủa hàm s ố ch ẵn và hàm s ố l ẻ Gi ả s ử hàm s ố y= f( x ) có t ập xác đị nh D là hàm s ố ch ẵn và có đồ th ị là (G). V ới m ỗi điểm M( x0; y 0 ) thu ộc đồ th ị (G), ta xét điểm đố i x ứng v ới nó qua tr ục tung là M'(− x0 ; y 0 ) . Từ đị nh ngh ĩa hàm s ố ch ẵn, ta có −x0 ∈ D và f(− x0) = fx( 0 ). Do đó MGyfx∈⇔=0( 0) ⇔=−⇔∈ yfx 0( 0 ) M'( G ) . Điều đó ch ứng t ỏ (G) có tr ục đố i x ứng là tr ục tung. 9
- Nếu f là hàm s ố l ẻ thì lí lu ận t ươ ng t ự, ta c ũng được (G) có tâm đối x ứng là g ốc t ọa độ O. 5. Hàm s ố tu ần hoàn 5.1. Định ngh ĩa. Hàm s ố y= f( x ) có t ập xác đị nh D được gọi là hàm s ố tu ần hoàn n ếu tồn t ại m ột s ố d ươ ng T sao cho v ới m ọi x∈ D ta có ix) + T ∈ D và x− T ∈ D ; iifx)( ± T) = fx( ) . Số nh ỏ nh ất (n ếu có) trong các s ố T có các tính ch ất trên g ọi là chu k ỳ c ủa hàm s ố tu ần hoàn f( x ). 5.2. M ột s ố ví d ụ Ví d ụ 1. Các hàm s ố l ượng giác y=cos xy ; = sin x là các hàm s ố tu ần hoàn có chu k ỳ T =2 π . Các hàm s ố l ượng giác y=tan xy ; = cot x là các hàm s ố tu ần hoàn có chu k ỳ T = π . Ví d ụ 2. Ch ứng minh các hàm s ố sau đây không ph ải là hàm s ố tu ần hoàn yfx=( ) = x4 + 2 x 3 ; ygx=() =2 x − 3 ; x3 y= h() x = . x2 − 4 Gi ải. x = 0 + Xét fx() =0 ⇔ x4 + 2 x 3 = 0 ⇔ x = − 2 Nếu hàm s ố y= fx( ) = x4 + 2 x 3 là hàm s ố tu ần hoàn thì t ồn t ại s ố T > 0 sao cho f(0+ T) = f ( 0) = 0, suy ra T > 0 là nghi ệm c ủa f( x ), vô lý. V ậy, hàm s ố f( x ) không ph ải là hàm s ố tu ần hoàn. + Hàm s ố ygx=() = 2 x − 3 cũng không ph ải là hàm s ố tu ần hoàn, l ập lu ận gi ống nh ư đối với hàm s ố f( x ). x3 + Hàm s ố y= h( x ) = có t ập xác đị nh D =ℝ \{ − 2;2} . Gi ả s ử hàm s ố h( x ) là hàm s ố x2 − 4 tu ần hoàn thì tồn t ại s ố th ực d ươ ng T sao cho v ới ∀x ∈ D⇒ xT± ∈ D . Do D =ℝ \{ − 2;2} , nên 2 +T thu ộc D suy ra 2(2= +T ) −∈ T D , vô lý. V ậy hàm s ố h( x ) không ph ải là hàm s ố tu ần hoàn. Chú ý. Chúng ta có m ột s ốVIETMATHS.NET d ấu hi ệu để nh ận bi ết một hàm s ố đã cho không ph ải là một hàm s ố tu ần hoàn, ch ẳng h ạn ta có hai d ấu hi ệu sau. + Nếu một hàm s ố có t ập xác đị nh d ạng D= ℝ \ A , v ới A là một tập hợp hữu h ạn thì hàm s ố đó không ph ải là một hàm s ố tu ần hoàn. + N ếu ph ươ ng trình f( x) = k có nghi ệm, nh ưng s ố nghi ệm là m ột s ố h ữu h ạn, thì hàm s ố 10
- y= f( x ) không ph ải là một hàm số tu ần hoàn. Ví d ụ 3. Cho hàm s ố π 0 ,x= +π k ; k ∈ ℤ 2 y= f() x = 1 π ,x≠ +π k ; k ∈ ℤ 2+ tan2 x 2 Ch ứng minh r ằng hàm s ố y= gx( ) = fx( ) + fax( ) là hàm s ố tu ần hoàn, khi và ch ỉ khi a là một s ố h ữu t ỉ. Gi ải. Dễ dàng ch ứng minh được f( x ) là hàm s ố tu ần hoàn. p Điều ki ện đủ . N ếu a là s ố h ữu t ỉ thì a = v ới p, q∈ℤ , q > 0. Khi đó có s ố d ươ ng T= q π q th ỏa gxq( +π=) fxq( +π+) faxaq( +π=) fx( ) + faxp( +π=) fx( ) + fax( ) = gx( ). Ch ứng minh t ươ ng t ự ta c ũng được gxq( − π) = gx( ). Ch ứng t ỏ hàm s ố g( x ) là hàm s ố tu ần hoàn. 1 1 Điều ki ện c ần. Gi ả s ử a là s ố vô t ỉ. Ta th ấy g()()()0= f 0 + f 0 =+= 1. N ếu t ồn t ại 2 2 1 x ≠ 0 sao cho g( x ) =1 thì fx( ) + fax( ) = 1, nh ưng 0 ≤f() x ≤ v ới m ọi x, nên suy ra 0 0 0 0 2 1 fx()()= fax = . Do đó tanx = 0 và tan(ax ) = 0. 0 0 2 0 0 Vì v ậy x0 = m π và ax0 = n π v ới m, n ∈ℤ . ax 0 nπ n Do x0 ≠ 0 nên a = = = là s ố h ữu t ỉ. x0 mπ m Điều này mâu thu ẫn v ới a là s ố vô t ỉ. Suy ra ph ươ ng trình g( x ) =1 ch ỉ có m ột nghi ệm duy nh ất x = 0, nên g( x ) không ph ải là hàm số tu ần hoàn. Vậy, n ếu g( x ) là hàm s ố tu ần hoàn thì a ph ải là s ố vô t ỉ. 6. Hàm s ố h ợp 6.1. Định ngh ĩa. Cho hàm s ố y= f( x ) xác định trên t ập D1 và y= g( x ) xác định trên D2 . Khi đó ta g ọi hàm s ố h ợp c ủa hai hàm s ố f và g kí hi ệu g f được xác đị nh y=( gf )( x) = gfx( ) xác định trên t ập D={ xDfx ∈1|( ) ∈ D 2 } . 6.2. Ví d ụ x +1 Cho các hàm s ố yfx=( ) = lg x ; y= g( x ) = . x −1 Xác định các hàm số hợp f g và g f . 11
- lgx + 1 Gi ải. Ta có ()()()gfx = gfx = g[]lg x = . lgx − 1 Hàm số này xác định trên t ập (0;+∞ ) \{10}. x+1 x + 1 ()()()fgx = fgx = f = lg . x−1 x − 1 Hàm số này xác định trên t ập (−∞; − 1) ∪( 1; +∞ ) . Ví d ụ này cho th ấy gf ≠ f g . 7. Hàm s ố ng ược 7.1. Định ngh ĩa. Cho hàm s ố f: X→ Y x֏ y= fx() nếu v ới m ỗi giá tr ị y∈ Tf = fX( ), có m ột và ch ỉ m ột x∈ X sao cho f( x) = y , t ức là ph ươ ng trình f( x) = y v ới ẩn x có nghi ệm duy nh ất, thì b ằng cách cho t ươ ng ứng v ới m ỗi y∈ f( X ) ph ần t ử duy nh ất x∈ X , ta xác định được hàm s ố g: fX( ) → X y֏ xgy= () ( x th ỏa mãn f( x) = y ). Hàm s ố g xác định nh ư v ậy được g ọi là hàm s ố ng ược c ủa hàm s ố f . Theo thông l ệ, ng ười ta th ường kí hi ệu đố i s ố là x và hàm s ố là y. Khi đó hàm s ố ng ược c ủa hàm s ố y= f( x ) s ẽ được vi ết l ại là y= g( x ). Gi ả s ử hàm s ố y= f( x ) có hàm s ố ng ược, để tìm hàm s ố ng ược c ủa hàm s ố y= f( x ) ta gi ải ph ươ ng trình f( x) = y ẩn x, ph ươ ng trình này có nghi ệm duy nh ất x= g( y ), đổi kí hi ệu theo cách vi ết thông th ường ta được hàm s ố ng ược y= g( x ). Chú ý. Ng ười ta th ường kí hi ệu hàm s ố ng ược c ủa hàm s ố y= f( x ) là y= f−1 ( x ). 7.2. Ví d ụ Cho hàm s ố y= x2 − 2 x trên t ập xác đị nh [1;+∞ ) . Tìm hàm s ố ng ược. Gi ải. 2 Trên t ập xác đị nh [1;+∞VIETMATHS.NET ) ph ươ ng trình x−2 x = y có nghi ệm duy nh ất x=1 + 1 + y . Vậy hàm s ố ng ược c ần tìm là y=1 + 1 + x . Chú ý. Từ đị nh ngh ĩa c ủa hàm s ố ng ược, suy ra r ằng: T ập xác đị nh c ủa hàm s ố ng ược y= f−1 ( x ) là t ập giá tr ị c ủa hàm s ố y= f( x ), t ập giá tr ị c ủa hàm s ố ng ược là t ập xác đị nh c ủa hàm s ố 12
- y= f( x ). Dĩ nhiên hàm s ố y= f( x ) l ại là hàm s ố ng ược c ủa hàm s ố y= f−1 ( x ). Vì v ậy ta nói hai hàm s ố y= f( x ) và y= f−1 ( x ) là hai hàm s ố ng ược nhau. 7.3. Điều ki ện đủ để hàm s ố có hàm s ố ng ược 7.3.1. Định lý. M ọi hàm s ố đồ ng bi ến (hay ngh ịch bi ến) trên t ập xác đị nh c ủa nó đề u có hàm s ố ng ược. Ch ứng minh. Gi ả s ử hàm s ố y= f( x ) đồng bi ến trên t ập xác định D, v ới m ỗi y∈ f( D ) có ít nh ất x∈ D sao cho f( x) = y . Ta ch ứng minh r ằng x là duy nh ất. Th ật v ậy, gi ả s ử còn có x ' ( x'≠ xx , < x ' ch ẳng h ạn) sao cho y= f( x ') , th ế thì x< x ' s ẽ kéo theo fx( ) < fx( ') vì hàm s ố đồ ng bi ến, do đó fx( ) ≠ fx( ') ; điều này mâu thu ẫn v ới fx( ) = y = fx( ') . V ậy theo định ngh ĩa, hàm s ố y= f( x ) có hàm s ố ng ược. Ch ứng minh t ươ ng t ự trong tr ường h ợp hàm s ố ngh ịch bi ến. 7.4. Đồ th ị c ủa hàm s ố ng ược 7.4.1. Định lý. Trong h ệ tr ục t ọa độ Đề Các vuông góc Oxy , đồ th ị c ủa hai hàm s ố ng ược nhau y= f( x ) và y= f−1 ( x ) đối x ứng nhau qua đường phân giác th ứ nh ất y= x . Ch ứng minh. Gi ả s ử hàm s ố y= f( x ) có t ập xác đị nh là D và t ập giá tr ị là Tf = f( D ), khi đó hàm s ố ng ược có t ập xác đị nh là f( D ) và t ập giá tr ị là D . Gọi M( a; b ) là m ột điểm trên đồ th ị hàm s ố y= f( x ) ta có a∈ Db, = fa( ) ∈ fD( ) . Theo định ngh ĩa c ủa hàm s ố ng ược, n ếu x= b thì f−1 ( b) = a , nên N( b; a ) thu ộc đồ th ị c ủa hàm s ố ng ược y= f−1 ( x ) . Hai điểm M và N là đối x ứng v ới nhau qua đường phân giác th ứ nh ất y= x . Nh ư v ậy m ỗi điểm thu ộc đồ th ị c ủa hàm s ố y= f( x ) đều đố i x ứng v ới m ột điểm thu ộc đồ th ị hàm s ố y= f−1 ( x ) qua đường phân giác th ứ nh ất. Ng ược l ại, ta c ũng th ấy r ằng v ới m ỗi điểm thu ộc đồ th ị c ủa hàm s ố ng ược y= f−1 ( x ) đều đối x ứng v ới m ột điểm thu ộc đồ th ị c ủa hàm s ố y= f( x ) qua đường phân giác th ứ nh ất. Vậy, đồ th ị c ủa hai hàm s ố ng ược nhau đối x ứng v ới nhau qua đường phân giác th ứ nh ất. Chú ý. T ừ tính ch ất c ủa đồ th ị hàm s ố ng ược ta suy ra r ằng đồ th ị c ủa hai hàm s ố ng ược nhau, nếu c ắt nhau thì c ắt nhau trên đường th ẳng y= x . T ừ đó ta có th ể áp d ụng để gi ải các ph ươ ng trình d ạng fx( ) = f−1 ( x ) b ằng cách đưa v ề ph ươ ng trình f( x) = x ho ặc f−1 ( x) = x . Ch ẳng hạn ta xét ví d ụ sau. Ví d ụ. Gi ải ph ươ ng trình x3+−(3 aa 2) = 3.33 xa +−( 2 3 ) a v ới a ∈( − 2;2) . x3+(3 − a 2 ) a Gi ải. Hàm s ố y = luôn đồng bi ến trên ℝ nên có hàm s ố ng ược là 3 13
- x3+(3 − a 2 ) a y=3 3 xa +( 2 − 3) a . Hoành độ giao điểm c ủa hai đồ th ị y = và 3 x3+(3 − a 2 ) a y=3 3 xa +( 2 − 3 ) a chính là hoành độ giao điểm c ủa hai đồ th ị y= x và y = . 3 Do đó ph ươ ng trình đã cho t ươ ng đươ ng v ới x3+(3 − a 2 ) a =⇔−+−xx33 x() 3 aa 2 = 0 3 ⇔−−xa3 3 30()() xa −=⇔− xaxaxa()2 ++−= 2 30 x= a 2 ⇔ −a ±12 − 3 a 2 (do a ∈( − 2;2 ) nên 12− 3a > 0 ). x = 2 x3+(3 − a 2 ) a (D ĩ nhiên hai hàm s ố y = và y=3 3 xa +( 2 − 3 ) a không trùng nhau) 3 Bằng ph ươ ng pháp nh ư trên chúng ta có th ể gi ải được ph ươ ng trình x3 +1 = 23 2 x − 1. (1) x3 +1 Th ật v ậy ph ươ ng trình (1) có th ể vi ết được d ưới d ạng =3 2x − 1 2 x3 +1 Hàm s ố y = có hàm s ố ng ược là y=3 2 x − 1 (hai hàm s ố này không trùng nhau), nên 2 x3 +1 −1 ± 5 ph ươ ng trình (1) t ươ ng đươ ng v ới = x , t ừ đó ta được nghi ệm x=1; x = . 2 2 Chú ý. Gi ải ph ươ ng trình (1) có th ể đặ t y=3 2 x − 1 suy ra y3 +1 = 2 x . Khi đó, ph ươ ng trình x3 +1 = 2 y (1) được vi ết thành h ệ ph ươ ng trình y3 +1 = 2 x Đây là h ệ ph ươ ng trình đối x ứng ta s ẽ nghiên c ứu ở ph ần sau. 8. Các hàm s ố s ơ c ấp c ơ b ản Ta g ọi các hàm s ố sau đây là hàm s ố s ơ c ấp c ơ b ản 8.1. Hàm h ằng: y= a , a ∈ ℝ Hàm h ằng y= a có t ập xác đị nh D = ℝ, tập giá tr ị Ty = { a }. 8.2. Hàm s ố l ũy th ừa: yVIETMATHS.NET= fx () = x α , α∈ ℝ Tập xác đị nh c ủa hàm s ố l ũy th ừa y= x α tùy thu ộc vào α, c ụ th ể ta có: + N ếu α nguyên d ươ ng thì D = ℝ. + N ếu α nguyên âm ho ặc α = 0 thì D = ℝ*. 14
- + N ếu α không nguyên thì D = ℝ+ . Mi ền giá tr ị c ủa hàm s ố l ũy th ừa c ũng tùy thu ộc vào α, chẳng h ạn: 2 · α = 2, ta có y= fx( ) = xT ;f = [0; +∞ ). 3 · α = 3, ta có y= fx() = xT ;f = ℝ . 1 1 · α = , ta có y= fx() = xT2 ; = [0; +∞ ). 2 f 1 1 − · α = − , ta có y= fx() = x3 ; T = ℝ+ . 3 f Chú ý. V ới m ọi α∈ ℝ, đồ th ị c ủa hàm s ố l ũy th ừa y= x α đi qua điểm (1;1). 8.3. Hàm s ố m ũ: y= fx( ) = aax , >≠ 0, a 1 x Hàm s ố m ũ y= a có t ập xác đị nh D = ℝ. Mi ền giá tr ị c ủa hàm s ố m ũ là Tf =(0; +∞ ). + N ếu a >1, thì hàm s ố m ũ đồ ng bi ến trên t ập xác đị nh. + N ếu 0 1 y a> 1 a 1 O 1 x + Đồ th ị c ủa hàm s ố y= ax ,0 < a < 1 0 < a < 1 y 1 a O 1 x 15
- 8.4. Hàm s ố logarit: yfx=( ) = loga xa , >≠ 0, a 1 Hàm s ố logarit y= log a x có t ập xác đị nh D =(0; +∞ ). Mi ền giá tr ị c ủa hàm s ố logarit là Tf = ℝ. + N ếu a >1, thì hàm s ố logarit đồ ng bi ến trên t ập xác đị nh. + N ếu 0 1 y a > 1 1 O 1 a x + y=loga x ,0 < a < 1 y 1 O a 1 x 0 < a < 1 8.5. Hàm s ố l ượng giác 8.5.1. Hàm s ố y= sin x VIETMATHS.NET và hàm s ố y= cos x Các hàm s ố y= sin x và y= cos x đều có t ập xác đị nh D = ℝ, và mi ền giá tr ị là đoạn [− 1;1]. Các hàm s ố y= sin x và y= cos x đều là hàm s ố tu ần hoàn v ới chu k ỳ T =2 π . 16
- π π Hàm s ố y= sin x là hàm s ố l ẻ, đồ ng bi ến trên m ỗi kho ảng (−+k 2; π + k 2), π k ∈ ℤ ; ngh ịch 2 2 π3 π bi ến trên m ỗi kho ảng (+k 2; π + k 2), π k ∈ ℤ . 2 2 Hàm s ố y= cos x là hàm s ố ch ẵn, đồ ng bi ến trên m ỗi kho ảng (−π+k 2;2), π k π k ∈ ℤ ; ngh ịch bi ến trên m ỗi kho ảng (2;kππ+ k 2), π k ∈ ℤ . Đồ th ị c ủa các hàm s ố y= sin x và y= cos x nh ư sau. y 1 y = cos x -2 π 3π -π π π π 3π 2π x - - O 2 2 2 2 -1 y = sin x 8.5.2. Hàm s ố y=tan xy ; = cot x · Hàm s ố y= tan x π Hàm s ố y= tan x có t ập xác đị nh D=ℝ\ +π∈ k / k ℤ . 2 Mi ền giá tr ị là ℝ. π π Hàm s ố y= tan x luôn luôn đồng bi ến trên m ỗi kho ảng (− +πk ; +π k ), k ∈ ℤ . 2 2 Hàm s ố y= tan x là hàm s ố l ẻ, và là hàm s ố tu ần hoàn v ới chu k ỳ T = π . Đồ th ị c ủa hàm s ố y= tan x nh ư sau. y x 3π -π π O π π 3π - - 2 2 2 2 · Hàm s ố y= cot x Hàm s ố y= cot x có t ập xác đị nh D=ℝ\{ k π / k ∈ ℤ } . Mi ền giá tr ị là ℝ. Hàm s ố y= cot x luôn luôn ngh ịch bi ến trên m ỗi kho ảng (kππ+ ; k π ), k ∈ ℤ . Hàm s ố y= cot x là hàm s ố l ẻ, và là hàm s ố tu ần hoàn v ới chu k ỳ T = π . Đồ th ị c ủa hàm s ố y= cot x nh ư sau. 17
- y x - π O π π 3 π - π 2π 2 2 2 8.6. Hàm s ố l ượng giác ng ược 8.6.1. Hàm s ố y= arcsin x π π Hàm s ố y= arcsin x là hàm s ố ng ược c ủa hàm s ố y= sin x trên đoạn [− ; ]. 2 2 π π Hàm s ố y= arcsin x có t ập xác đị nh là D =[ − 1;1]. Mi ền giá tr ị là [− ; ]. 2 2 Hàm s ố y= arcsin x t ăng trên t ập xác đị nh. Hàm s ố y= arcsin x là hàm s ố l ẻ. Đồ th ị c ủa hàm s ố y= arcsin x nh ư sau. y π 2 -1 O 1 x π - 2 8.6.2. Hàm s ố y= arccos x Hàm s ố y= arccos x là hàm s ố ng ược c ủa hàm s ố y= cos x trên đoạn [0;π ]. Hàm s ố y= arccos x có t ập xác đị nh là D =[ − 1;1]. Mi ền giá tr ị là [0;π ]. Hàm s ố y= arccos x gi ảm trên t ập xác đị nh. Đồ th ị c ủa hàm s ố y= arccos x nh ư sau. y π π VIETMATHS.NET2 -1O 1 x 8.6.3. Hàm s ố y= arctan x 18
- π π Hàm s ố y= arctan x là hàm s ố ng ược c ủa hàm s ố y= tan x trên kho ảng (− ; ). 2 2 π π Hàm s ố y= arctan x có t ập xác đị nh là D = ℝ. Mi ền giá tr ị là (− ; ). 2 2 Hàm s ố y= arctan x luôn luôn tăng trên t ập xác đị nh. Hàm s ố y= arctan x là hàm s ố l ẻ. Đồ th ị c ủa hàm s ố y= arctan x nh ư sau. π y π 2 O x π - 2 8.6.4. Hàm s ố y= arccot x Hàm s ố y= arccot x là hàm s ố ng ược c ủa hàm s ố y= cot x trên kho ảng (0;π ). Hàm s ố y= arccot x có t ập xác đị nh là D = ℝ. Mi ền giá tr ị là (0;π ). Hàm s ố y= arccot x luôn luôn gi ảm trên t ập xác đị nh. Hàm s ố y= arccot x là hàm s ố l ẻ. Đồ th ị c ủa hàm s ố y= arccot x nh ư sau. y π π 2 O x Ta g ọi hàm s ố s ơ c ấp là hàm s ố cho b ởi m ột công th ức duy nh ất y= f( x ) v ới f( x ) là tổng, hi ệu, tích, th ươ ng ho ặc là hàm h ợp c ủa m ột s ố h ữu h ạn các hàm s ố s ơ c ấp c ơ b ản. §2. M ỘT S Ố PHÉP BI ẾN ĐỔ I ĐỒ TH Ị 1. Tr ục đố i x ứng, tâm đố i x ứng c ủa đồ th ị Chúng ta đã bi ết đồ th ị hàm s ố ch ẵn nh ận tr ục Oy làm tr ục đố i x ứng, đồ th ị hàm s ố l ẻ nh ận g ốc t ọa độ O làm tâm đối x ứng. Sau đây chúng ta đư a ra d ấu hi ệu cho bi ết đồ th ị c ủa một hàm s ố có tr ục đố i x ứng, tâm đố i x ứng. (Trong ph ần này chúng ta ch ỉ xét tr ục đố i x ứng của đồ th ị hàm s ố, cùng ph ươ ng v ới tr ục tung). 1.1. Định lý. Đồ th ị c ủa hàm s ố y= f( x ) nh ận đường th ẳng ∆ có ph ươ ng trình x = α làm tr ục đố i x ứng khi và ch ỉ khi f(2α − x) = fx( ) v ới m ọi x∈ D . Th ật v ậy, mu ốn cho đường th ẳng ∆ có ph ươ ng trình x = α là tr ục đố i x ứng c ủa đồ th ị y= f( x ) thì ắt có và đủ là n ếu điểm M( x; y ) thu ộc đồ th ị thì điểm M ' đối x ứng v ới điểm M qua ∆ c ũng thu ộc đồ th ị. Ở đây điểm M ' có t ọa độ (2α − x ; y ) , nh ư v ậy v ới m ọi x∈ D 19
- ta có f(2α − x) = fx( ) . b Ví d ụ. Đồ th ị hàm s ố y= ax2 ++ bx ca( ≠ 0) nh ận đường th ẳng x = − làm tr ục đố i x ứng 2a b 2 b vì ta có fxaxbxcax() =2 ++=−− +−− bx + c , v ới m ọi x ∈ℝ. a a 1.2. Định lý. Đồ th ị hàm s ố y= f( x ) nh ận điểm I (α; β ) làm tâm đối x ứng khi và ch ỉ khi f(2α− x) =β− 2 fxxD( ) , ∀∈ . Th ật v ậy, mu ốn cho điểm I (α; β ) là tâm đối x ứng c ủa đồ th ị, ắt có và đủ là n ếu điểm M( x; y ) thu ộc đồ th ị thì điểm M ' đối x ứng v ới nó qua I , t ức là điểm có t ọa độ M'2( α− x ;2 β− y ) c ũng thu ộc đồ th ị, t ức là v ới m ọi x∈ D , ta ph ải có 2β−fx( ) = f( 2 α− x ) . Chú ý. Trong định lý 1.1 cho α = 0 và trong định lý 1.2 cho α = β = 0, ta được k ết qu ả + Đồ th ị c ủa hàm s ố ch ẵn nh ận tr ục tung làm tr ục đố i x ứng. + Đồ th ị hàm s ố l ẻ nh ận g ốc t ọa độ làm tâm đối x ứng. Trong th ực t ế mu ốn ch ứng minh đồ th ị hàm s ố y= f( x ) nh ận đường th ẳng x= x 0 làm tr ục đối x ứng thì ta có th ể làm nh ư sau: x= X + x 0 · D ời h ệ tr ục t ọa độ Oxy v ề h ệ tr ục IXY , v ới I( x 0;0 ) theo công th ức y= Y · L ập hàm s ố m ới b ằng cách thay x= X + x0 ; yY = vào hàm s ố y= f( x ); · Ch ứng minh hàm s ố m ới Y= g( X ) là hàm s ố ch ẵn để k ết lu ận x= x 0 là tr ục đố i x ứng. Tươ ng t ự nh ư trên, mu ốn ch ứng minh I( x0, y 0 ) là tâm đối x ứng c ủa đồ th ị (C ) c ủa hàm s ố x= X + x y= f( x ) , ta d ời h ệ tr ục t ọa độ Oxy sang h ệ tr ục IXY , b ằng phép đặ t 0 ; y= Y + y 0 Sau đó ch ứng minh hàm s ố m ới Y= g( X ) là hàm s ố l ẻ để k ết lu ận điểm I( x0; y 0 ) là tâm đối xứng c ủa đồ th ị. Ví d ụ 1 . Ch ứng minh đồ th ị c ủa hàm s ố yx=−44 x 3 − 2 x 2 + 12 x − 1 nh ận đường th ẳng x = 1 làm tr ục đố i x ứng. T ừ đó tìm giao điểm c ủa đồ th ị hàm s ố v ới tr ục hoành. x= X + 1 Gi ải. Đặt y= Y Hàm s ố đã cho tr ở thành VIETMATHS.NET YX=+−144 X +− 12 3 X ++ 112 2 X +− 11 ( ) ( ) ( ) ( ) ⇔=Y X4 −8 X 2 + 6. Hàm s ố Y= X4 −8 X 2 + 6 là hàm s ố ch ẵn. V ậy đường th ẳng x = 1 là tr ục đố i x ứng c ủa đồ th ị hàm s ố đã cho. 20
- Đặt tX=2 ≥ 0⇒ tt 2 − 860 += ⇔=± t 410 ⇒ X1,2=±−4 10, X 3,4 =±+ 4 10⇒ x 1,2=±− 1 410, x 3,4 =±+ 1 4 10. Vậy, có b ốn giao điểm c ủa đồ th ị hàm s ố đã cho v ới tr ục hoành là (1+− 4 10 ;0), (1 −− 4 10 ;0), (1 ++ 4 10 ;0), (1 −+ 4 10;0). Ví d ụ 2 . Ch ứng minh đồ th ị hàm s ố b ậc ba y= fx( ) =+++ ax3 bx 2 cx d( a ≠ 0) nh ận điểm b b uốn I−; f − làm tâm đối x ứng. 3a 3 a Gi ải. x= X + x 0 b b Dời h ệ tr ục t ọa độ b ằng phép đặ t v ới x0=−; y 0 = f − . Thay vào y= Y + y 0 3a 3 a hàm s ố y= f( x ) ta được 3 2 Yy+= aXx()()() ++ bXx + + cXx ++ d 0 0 0 0 3 2 ⇔=Y aX +()3 ax0 + 2 bx 0 + c X . Hàm này là hàm s ố l ẻ nên đồ th ị nh ận I làm tâm đối x ứng. Nh ư v ậy, đồ th ị hàm s ố b ậc ba y= fx( ) =+++ ax3 bx 2 cx d( a ≠ 0) nh ận điểm u ốn làm tâm đối x ứng. Ta c ũng có k ết qu ả: Đồ th ị c ủa các hàm s ố ax+ b y=, c ≠ 0; adbc −≠ 0 ; cx+ d ax2 + bx + c y=( a . d ≠ 0, mẫu và t ử không có nghi ệm chung) dx+ e nh ận giao điểm c ủa hai đường ti ệm c ận làm tâm đối x ứng. Ví d ụ 3 . Cho hàm s ố yx=++4( m 3) x 3 + 2( mx + 1) 2 . Tìm m để đồ th ị c ủa hàm s ố có tr ục đố i x ứng cùng ph ươ ng v ới tr ục tung. Gi ải. Gi ả s ử x = α là tr ục đố i x ứng c ủa đồ th ị hàm s ố đã cho. Đặt x= X + α . Khi đó yX=4 +α++(4 mX 3) 3 +α+α++ [6 2 3 ( m 3) 2( mX + 1)] 2 +α+α[43 3( 2 m ++α 3)4( mX + 1)] +α+4 ( m +α+ 3) 3 2( m +α 1) 2 ph ải là hàm s ố ch ẵn. Điều này t ươ ng đươ ng v ới 4α+m + 3 = 0 (1) 4α+α3 3 2 (m + 3) +α 4( m += 1) 0(2) 21
- α = 0⇒ m = − 3 Thay (1) vào (2) ta được −8 α ( α + 1)2 = 0 ⇔ α = − 1⇒ m = 1. 2. Phép đối x ứng qua tr ục t ọa độ 2.1. Định lý. Đồ th ị c ủa các hàm s ố y= f( x ) và y= − f( x ) đối x ứng nhau qua tr ục hoành. Ch ứng minh. V ới m ỗi giá tr ị c ủa x∈ D thì các hàm s ố y= f( x ) và y= − f( x ) cho ta hai giá tr ị đố i nhau c ủa y, do đó đồ th ị c ủa chúng đố i x ứng nhau qua tr ục hoành. 2.2. Định lý. Đồ th ị c ủa các hàm s ố y= f( x ) và y= f( − x ) đối x ứng nhau qua tr ục tung. Ch ứng minh t ươ ng t ự nh ư định lý 2.1. 3. Phép t ịnh ti ến song song v ới tr ục tung 3.1. Định lý. Đồ th ị c ủa hàm s ố y= fx( ) + by( = fx( ) − b), b > 0 suy ra t ừ đồ thị y= f( x ) b ằng m ột phép t ịnh ti ến theo vect ơ Oy(− Oy ) m ột đoạn b ằng b. Ch ứng minh. Th ật v ậy, g ọi O′ XY là h ệ tr ục m ới suy ra t ừ h ệ tr ục Oxy b ằng một phép t ịnh ti ến song song v ới tr ục tung v ề phía trên m ột đoạn OO′ = b . Công th ức đổ i h ệ tr ục t ọa độ là x= X y= Y + b . Bằng phép t ịnh ti ến đồ th ị y= f( x ) v ới b đơ n v ị theo vect ơ Oy , ta thu được đồ th ị c ủa hàm số y= f( x ) xét theo h ệ tr ục m ới, t ức c ũng là đồ th ị c ủa hàm s ố y= fx( ) + b . Tr ường h ợp đố i v ới hàm s ố y= fx( ) − b , ch ứng minh t ươ ng t ự. Ví d ụ 1. Từ đồ th ị hàm s ố y= x suy ra đồ th ị hàm s ố y= x + 2 b ằng phép t ịnh ti ến theo vect ơ Oy 2 đơ n v ị. Ví d ụ 2. Đồ th ị c ủa hàm s ố y= x 2 + 3 thu được t ừ parabol y= x 2 b ằng cách t ịnh ti ến 3 đơn vị theo vect ơ Oy . 4. Phép t ịnh ti ến song song v ới tr ục hoành 4.1. Định lý. Đồ th ị hàm s ố y=+ fxa( ) ( y =− fxa( )), a > 0 suy được t ừ đồ th ị hàm s ố y= f( x ) b ằng phép t ịnh ti ến theo vect ơ −Ox( Ox ) m ột đoạn b ằng a. Ch ứng minh t ươ ng t ự nh ư định lý 3.1. 2 Ch ẳng h ạn đồ th ị c ủa hàm s ố y=() x − 2 thu được t ừ phép t ịnh ti ến parabol y= x 2 theo vect ơ Ox (sang bên ph ải) m ột đoạn b ằng 2. VIETMATHS.NET Nếu t ịnh ti ến parabol y= x 2 theo vect ơ −Ox (sang bên trái) 2 đơ n v ị ta thu được đồ th ị hàm 2 số y=() x + 2 . Chú ý. Ngoài phép t ịnh ti ến theo các tr ục t ọa độ ng ười ta còn đư a ra phép t ịnh ti ến theo vect ơ v ≠ 0. 22