Bài giảng Cơ sở tự động - Chương 1: Giới thiệu về hệ thống điều khiển tự động - Nguyễn Đức Hoàng

pptx 62 trang ngocly 1290
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Cơ sở tự động - Chương 1: Giới thiệu về hệ thống điều khiển tự động - Nguyễn Đức Hoàng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pptxbai_giang_co_so_tu_dong_chuong_1_gioi_thieu_ve_he_thong_dieu.pptx

Nội dung text: Bài giảng Cơ sở tự động - Chương 1: Giới thiệu về hệ thống điều khiển tự động - Nguyễn Đức Hoàng

  1. MÔN HỌC CƠ SỞ TỰ ĐỘNG Giảng viên: Nguyễn Đức Hoàng Bộ môn Điều Khiển Tự Động Khoa Điện – Điện Tử Đại Học Bách Khoa Tp.HCM Email: ndhoang@hcmut.edu.vn
  2. Nội dung môn học (10 chương) (14 tuần = 42 tiết LT + 14 tiết BT) Chương 1: Giới thiệu về hệ thống điều khiển tự động Chương 2: Mô hình toán học hệ thống liên tục Chương 3: Đặc tính động học Chương 4: Khảo sát tính ổn định của hệ thống Chương 5: Chất lượng hệ thống điều khiển Chương 6: Thiết kế hệ thống tuyến tính liên tục Chương 7: Mô hình toán học hệ rời rạc Chương 8: Phân tích hệ rời rạc Chương 9: Thiết kế hệ rời rạc Chương 10: Ứng dụng
  3. Tài liệu tham khảo GiáoGiáo trình:trình: LýLý thuythuyếếtt đđiiềềuu khikhiểểnn ttựự đđộộngng Nguyễn Thị Phương Hà – Huỳnh Thái Hoàng NXB Đại Học Quốc Gia TpHCM BàiBài ttậập:p: BàiBài ttậậpp đđiiểểuu khikhiểểnn ttựự đđộộngng Nguyễn Thị Phương Hà TàiTài liliệệu:u: AutomaticAutomatic ControlControl SystemSystem ModernModern ControlControl SystemSystem TheoryTheory andand DesignDesign
  4. Đánh giá Thi giữa kỳ : 20% Thi cuối kỳ : 60% Bài tập : 20% bao gồm: + về nhà có kết hợp mô phỏng Matlab + trên lớp : gọi lên bảng làm ( mỗi lần không làm được -1đ vào điểm thi GK, -0.5đ vào điểm thi CK )
  5. CHƯƠNG 1 GIỚI THIỆU VỀ HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG
  6. 1769 • James Watt’s steam engine and governor developed. The Watt steam engine is often used to mark the beginning of the Industrial Revolution in Great Britain. During the Industrial Revolution, great strides were made in the development of mechanization, a technology preceding automation. Control Systems 6
  7. Control • Control is a sequence of decisions aimed at the attainment of specified objectives in an environment of uncertainty and presence of disturbances.
  8. Control system • A control system is an arrangement of physical components connected or related in such a manner as to command, direct, or regulate itself or another system.
  9. Input • The input is the stimulus, excitation or command applied to a control system. • Typically from external energy source, usually in order to produce a specified response from the control system.
  10. Output • The output is the actual response obtained from a control system. • It may or may not be equal to specified response implied by the input.
  11. History of Automatic Control
  12. Prior to World War II A main impetus for the use of feedback in the United States was the development of the telephone system and electronic feedback amplifiers by Bode, Nyquist, and Black at Bell Telephone Laboratories.
  13. Prior to World War II The Russian theory tended to utilize a time- domain formulation using differential equations.
  14. World War II Design and construct: • automatic airplane pilots, • gun-positioning systems, • radar antenna control systems.
  15. Sputnik and space age The time-domain methods developed by Liapunov, Minorsky, and others have met with great interest in the last two decades.
  16. Recent time Recent theories of optimal control developed by L.S. Pontryagin in the former Soviet Union and R. Bellman in the United States, and studies of robust systems, have contributed to the interest in time-domain methods.
  17. Terms and Concepts
  18. Two Types of Control Systems • Open Loop • Closed Loop – No feedback – Must have feedback – Difficult to control – Must have sensor on output output with accuracy – Almost always negative feedback
  19. Open-loop and closed-loop systems
  20. Open-loop control An open-loop control system utilizes an actuating device to control the process directly without using feedback. A common example of an open-loop control system is an electric toaster in the kitchen.
  21. Closed-loop control A closed-loop control system uses a measurement of the output and feedback of this signal to compare it with the desired output.
  22. A person steering an automobile by looking at the auto’s location on the road and making the appropriate adjustments. Control Systems
  23. Manual control system Goal: Regulate the level of fluid by adjusting the output valve. The input is a reference level of fluid and is memorized by operator. The power amplifier is the operator. The sensor is visual. Operator compares the actual level with the desired level and opens or closes the valve ( actuator). 29
  24. The level of fluid in a tank control. 30
  25. Multivariable control system
  26. A robot is a computer-controlled machine. Industrial robotics is a particular field of automation in which the robot is designed to substitute for human labor. The Honda P3 humanoid robot.
  27. The Control System Design Process
  28. Engineering design • Design is the process of conceiving or inventing the forms, parts, and details of a system to achieve a specified purpose.
  29. Engineering design Trade-off The result of making a judgment about how to compromise between conflicting criteria.
  30. Given a process, how to design a feedback control system? Three steps: • Modeling. Obtain mathematical description of the systems. • Analysis. Analyze the properties of the system. • Design. Given a plant, design a controller based on performance specifications.
  31. Design examples
  32. Rotating disk speed control Control Systems
  33. Step 1. Control goal • Design a system that will held a rotating disk at a constant speed. Ensure that the actual speed of rotation is within a specified percentage of desired speed. Control Systems
  34. Step 2. Variable to be controlled • Speed of rotation disc Control Systems
  35. Step 3. Control design specification • Design a system that will ensure that the actual speed of rotation is within a specified percentage of desired speed. Control Systems
  36. Step 4 Preliminary system configuration Control Systems
  37. Step 4 Preliminary system configuration Control Systems
  38. Insulin delivery system
  39. The blood glucose and insulin concentrations for a healthy person. Control Systems
  40. Step 1. Control goal • Design a system to regulate the blood sugar concentration of a diabetic by controlled dispensing of insulin. Control Systems
  41. Step 2. Variable to be controlled • Blood glucose concentration Control Systems
  42. Step 3. Control design specification • Provide a blood glucose level for the diabetic that closely approximates the glucose level of a healthy person. Control Systems
  43. Step 4 Preliminary system configurations Control Systems
  44. Disk drive read system Control Systems
  45. Control Systems
  46. Step 1. Control goal • Design a system that will held the position the reader head to read the data stored on a track on the disk. Control Systems
  47. Step 2. Variable to be controlled • Position of the reader head Control Systems
  48. Step 3. Control design specification • Design a system that will ensure that the head : - “flies” above the disk at a distance of less than 100 nm, - with the position accuracy is 1 m, - with speed from track to track 50 ms Control Systems
  49. Step 4 Preliminary system configuration Control Systems
  50. P1.8 Student-teacher learning process • Construct a feedback model of the learning process and identify each block of the system. Control Systems
  51. P1.8 Student-teacher learning process
  52. Inverted pendulum control • E1.11 Sketch the block diagram of a feedback control system. Identify the process, sensor, actuator, and controller. The objective is keep the pendulum in the upright position ( = 0), in the presence of disturbances. Control Systems
  53. Control Systems
  54. Inverted pendulum control