Giáo trình Thông gió và thông thoáng khí

pdf 197 trang ngocly 650
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Thông gió và thông thoáng khí", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_thong_gio_va_thong_thoang_khi.pdf

Nội dung text: Giáo trình Thông gió và thông thoáng khí

  1. CHƯƠNG I NHỮNG KIẾN THỨC CƠ BẢN VỀ KHÔNG KHÍ ẨM Điều hòa không khí là kỹ thuật tạo ra và duy trì điều kiện vi khí hậu thích hợp với con người và công nghệ của các quá trình sản xuất. Để có thể đi sâu nghiên cứu kỹ thuật điều hoà không khí trước hết chúng tôi sơ lược các tính chất nhiệt động cơ bản của không khí ẩm. 1.1 KHÔNG KHÍ ẨM Không khí xung quanh chúng ta là hỗn hợp của nhiều chất khí, chủ yếu là N2 và O2 ngoài ra còn một lượng nhỏ các khí trơ, CO2, hơi nước . . . - Không khí khô : Không khí không chứa hơi nước gọi là không khí khô.Trong các tính toán thường không khí khô được coi là khí lý tưởng. Thành phần của các chất trong không khí khô được phân theo tỷ lệ sau : Bảng 1-1 : Tỷ lệ các chất khí trong không khí khô Thành phần Theo khối lượng (%) Theo thể tích (%) - Ni tơ : N2 75,5 78,084 - Ôxi : O2 23,1 20,948 - Argon - A 1,3 0,934 - Carbon-Dioxide : CO2 0.1 0,0314 - Không khí ẩm : Không khí có chứa hơi nước gọi là không khí ẩm. Trong tự nhiên không có không khí khô tuyệt đối mà toàn là không khí ẩm. Không khí ẩm được chia ra : + Không khí ẩm chưa bão hòa : Là trạng thái mà hơi nước còn có thể bay hơi thêm vào được trong không khí. + Không khí ẩm bão hòa : Là trạng thái mà hơi nước trong không khí đã đạt tối đa và không thể bay hơi thêm vào đó được. Nếu bay hơi thêm vào bao nhiêu thì có bấy nhiêu hơi ẩm ngưng tụ lại. + Không khí ẩm quá bão hòa : Là không khí ẩm bão hòa và còn chứa thêm một lượng hơi nước nhất định. Tuy nhiên trạng thái quá bão hoà là trạng thái không ổn định mà có xu hướng biến đổi đến trạng thái bão hoà do lượng hơi nước dư bị tách dần ra khỏi không khí . Ví dụ như sương mù là không khí quá bão hòa. Tính chất vật lý và ảnh hưởng của không khí đến cảm giác con người phụ thuộc nhiều vào lượng hơi nước tồn tại trong không khí. 1
  2. 1.2 CÁC THÔNG SỐ CỦA KHÔNG KHÍ ẨM 1.2.1 Áp suất. Ap suất không khí thường được gọi là khí áp. Ký hiệu là B. Nói chung giá trị B thay đổi theo không gian và thời gian. Tuy nhiên trong kỹ thuật điều hòa không khí giá trị chênh lệch không lớn có thể bỏ qua và người ta coi B không đổi. Trong tính toán người ta lấy ở trạng thái tiêu chuẩn Bo = 760 mmHg . Đồ thị I-d của không khí ẩm thường được xây dựng ở áp suất B = 745mmHg và Bo = 760mmHg . 1.2.2 Khối lượng riêng và thể tích riêng. Khối lượng riêng của không khí là khối lượng của một đơn vị thể tích không khí . Ký hiệu là ρ, đơn vị kg/m3 . Đại lượng nghịch đảo của khối lượng riêng là thể tích riêng. Ký hiệu là v 1 v = , m3 / kg (1-1) ρ Khối lượng riêng và thể tích riêng là hai thông số phụ thuộc. Khối lượng riêng thay đổi theo nhiệt độ và khí áp. Tuy nhiên cũng như áp suất sự thay đổi của khối lượng riêng của không khí trong thực tế kỹ thuật không lớn nên người ta o 3 lấy không đổi ở điều kiện tiêu chuẩn : to = 20 C và B = Bo = 760mmHg : ρ = 1,2 kg/m 1.2.3 Độ ẩm 1.2.3.1. Độ ẩm tuyệt đối . Là khối lượng hơi ẩm trong 1m3 không khí ẩm. Giả sử trong V (m3) không khí ẩm có chứa Gh (kg) hơi nước thì độ ẩm tuyệt đối ký hiệu là ρh được tính như sau : G ρ = h , kg / m3 (1-2) h V Vì hơi nước trong không khí có thể coi là khí lý tưởng nên: 1 ph 3 ρ h = = , kg / m (1-3) vh Rh .T trong đó : 2 ph - Phân áp suất của hơi nước trong không khí chưa bão hoà, N/m o Rh - Hằng số của hơi nước Rh = 462 J/kg. K T - Nhiệt độ tuyệt đối của không khí ẩm, tức cũng là nhiệt độ của hơi nước , oK 1.2.3.2. Độ ẩm tương đối. Độ ẩm tương đối của không khí ẩm , ký hiệu là ϕ (%) là tỉ số giữa độ ẩm tuyệt đối ρh của không khí với độ ẩm bão hòa ρmax ở cùng nhiệt độ với trạng thái đã cho. ρ ϕ = h ,% (1-4) ρ max 2
  3. hay : Độ ẩm tương đối biểu thị mức độ chứa hơi nước trong không khí ẩm so với không khí ẩm bão hòa ở cùng nhiệt độ. (1-5) Khi ϕ = 0 đó là trạng thái không khí khô. p ϕ = h ,% pmax 0 < ϕ < 100 đó là trạng thái không khí ẩm chưa bão hoà. ϕ = 100 đó là trạng thái không khí ẩm bão hòa. - Độ ẩm ϕ là đại lượng rất quan trọng của không khí ẩm có ảnh hưởng nhiều đến cảm giác của con người và khả năng sử dụng không khí để sấy các vật phẩm. - Độ ẩm tương đối ϕ có thể xác định bằng công thức, hoặc đo bằng ẩm kế . Ẩm kế là thiết bị đo gồm 2 nhiệt kế : một nhiệt kế khô và một nhiệt kế ướt. Nhiệt kế ướt có bầu bọc vải thấm nước ở đó hơi nước thấm ở vải bọc xung quanh bầu nhiệt kế khi bốc hơi vào không khí sẽ lấy nhiệt của bầu nhiệt kế nên nhiệt độ bầu giảm xuống bằng nhiệt độ nhiệt kế ướt tư ứng với trạng thái không khí bên ngoài. Khi độ ẩm tương đối bé , cường độ bốc hơi càng mạnh, độ chênh nhiệt độ giữa 2 nhiệt kế càng cao. Do đó độ chênh nhiệt độ giữa 2 nhiệt kế phụ thuộc vào độ ẩm tương đối và nó được sử dụng để làm cơ sở xác định độ ẩm tương đối ϕ. Khi ϕ =100%, quá trình bốc hơi ngừng và nhiệt độ của 2 nhiệt kế bằng nhau. 1.2.4 Dung ẩm (độ chứa hơi). Dung ẩm hay còn gọi là độ chứa hơi, được ký hiệu là d là lượng hơi ẩm chứa trong 1 kg không khí khô. G d = h , kg / kgkkk (1-6) Gk - Gh : Khối lượng hơi nước chứa trong không khí, kg - Gk : Khối lượng không khí khô, kg Ta có quan hệ: Gh ρ h ph Rk d = = = . (1-7) pGk ρpk pk Rh d = 0,622. h = h , kg / kgkkk (1-8) pk p − ph Sau khi thay R = 8314/µ ta có 1.2.5 Nhiệt độ. Nhiệt độ là đại lượng biểu thị mức độ nóng lạnh. Đây là yếu tố ảnh hưởng lớn nhất đến cảm giác của con người. Trong kỹ thuật điều hòa không khí người ta thường sử dụng 2 thang nhiệt độ là độ C và độ F. Đối với một trạng thái không khí nhất định nào đó ngoài nhiệt độ thực của nó trong kỹ thuật còn có 2 giá trị nhiệt độ có ảnh hưởng nhiều đến các hệ thống và thiết bị là nhiệt độ điểm sương và nhiệt độ nhiệt kế ướt. - Nhiệt độ điểm sương: Khi làm lạnh không khí nhưng giữ nguyên dung ẩm d (hoặc phân áp suất ph) tới nhiệt độ ts nào đó hơi nước trong không khí bắt đầu ngưng tụ thành nước bão hòa. Nhiệt độ ts đó gọi là nhiệt độ điểm sương. Như vậy nhiệt độ điểm sương của một trạng thái bất kỳ nào đó là nhiệt độ ứng với trạng thái bão hòa và có dung ẩm bằng dung ẩm của trạng thái đã cho. Hay nói cách khác nhiệt độ 3
  4. điểm sương là nhiệt độ bão hòa của hơi nước ứng với phân áp suất ph đã cho. Từ đây ta thấy giữa ts và d có mối quan hệ phụ thuộc. - Nhiệt độ nhiệt kế ướt : Khi cho hơi nước bay hơi đoạn nhiệt vào không khí chưa bão hòa (I=const) . Nhiệt độ của không khí sẽ giảm dần trong khi độ ẩm tương đối tăng lên. Tới trạng thái ϕ = 100% quá trình bay hơi chấm dứt. Nhiệt độ ứng với trạng thái bão hoà cuối cùng này gọi là nhiệt độ nhiệt độ nhiệt kế ướt và ký hiệu là tư . Người ta gọi nhiệt độ nhiệt kế ướt là vì nó được xác định bằng nhiệt kế có bầu thấm ướt nước. Như vậy nhiệt độ nhiệt kế ướt của một trạng thái là nhiệt độ ứng với trạng thái bão hòa và có entanpi I bằng entanpi của trạng thái đã cho. Giữa entanpi I và nhiệt độ nhiệt kế ướt tư có mối quan hệ phụ thuộc. Trên thực tế ta có thể đo được nhiệt độ nhiệt kế ướt của trạng thái không khí hiện thời là nhiệt độ trên bề mặt thoáng của nước. 1.2.6 Entanpi Entanpi của không khí ẩm bằng entanpi của không khí khô và của hơi nước chứa trong nó. Entanpi của không khí ẩm được tính cho 1 kg không khí khô. Ta có công thức: I = Cpk.t + d (ro + Cph.t) kJ/kg kkk (1-9) Trong đó : o Cpk - Nhiệt dung riêng đẳng áp của không khí khô Cpk = 1,005 kJ/kg. C o Cph - Nhiệt dung riêng đẳng áp của hơi nước ở 0oC : Cph = 1,84 kJ/kg. C o ro - Nhiệt ẩn hóa hơi của nước ở 0 C : ro = 2500 kJ/kg Như vậy: I = 1,005.t + d (2500 + 1,84.t) kJ/kg kkk (1-10) 1.3 ĐỒ THỊ I-d VÀ t-d CỦA KHÔNG KHÍ ẨM 1.3.1 Đồ thị I-d. Đồ thị I-d biểu thị mối quan hệ của các đại lượng t, ϕ, I, d và pbh của không khí ẩm . Đồ thị được giáo sư L.K.Ramzin (Nga) xây dựng năm 1918 và sau đó được giáo sư Mollier (Đức) lập năm 1923. Nhờ đồ thị này ta có thể xác định được tất cả các thông số còn lại của không khí ẩm khi biết 2 thông số bất kỳ . Đồ thị I-d thường được các nước Đông Âu và Liên xô (cũ) sử dụng. Đồ thị I-d được xây dựng ở áp suất khí quyển 745mmHg và 760mmHg. Đồ thị gồm 2 trục I và d nghiêng với nhau một góc 135o. Mục đích xây dựng các trục nghiêng một góc 135o là nhằm làm giãn khoảng cách giữa các đường cong tham số để thuận lợi cho việc tra cứu. Trên đồ thị này các đường I = const nghiêng với trục hoành một góc 135o, đường d = const là những đường thẳng đứng. Đối với đồ thị I-d được xây dựng theo cách trên cho thấy các đường tham số hầu như chỉ nằm trên góc 1/4 thứ nhất .Vì vậy, để hình vẽ được gọn người ta xoay trục d lại vuông góc với trục I mà vẫn giữ nguyên các đường cong như đã biểu diễn, tuy nhiên khi tra cứu entanpi I của không khí ta vẫn tra theo đường nghiêng với trục hoành một góc 135o. Trên đồ thị I-d các đường đẳng nhiệt t=const là những đường thẳng chếch lên trên , các đường ϕ = const là những đường cong lồi, càng lên trên khoảng cách giữa chúng càng xa. 4
  5. Các đường ϕ = const không cắt nhau và không đi qua gốc toạ độ. Đi từ trên xuống dưới độ ẩm ϕ càng tăng. Đường cong ϕ =100% hay còn gọi là đường bão hoà ngăn cách giữa 2 vùng : Vùng chưa bão hoà và vùng ngưng kết hay còn gọi là vùng sương mù. Các điểm nằm trong vùng sương mù thường không ổn định mà có xung hướng ngưng kết bớt hơi nước và chuyển về trạng thái bão hoà . Khi áp suất khí quyển thay đổi thì đồ thị I-d cũng thay đổi theo. Áp suất khí quyển thay đổi trong khoảng 20mmHg thì sự thay đổi đó là không đáng kể. Trên hình 1.1 là đồ thị I-d của không khí ẩm , xây dựng ở áp suất khí quyển Bo= 760mmHg. Trên đồ thị này ở xung quanh còn có vẽ thêm các đường ε=const giúp cho tra cứu các sơ đồ tuần hoàn không khí trong chương 4. Hình 1.1 : Đồ thị I-d của không khí ẩm 5
  6. 1.3.2 Đồ thị d-t. Đồ thị d-t được các nước Anh, Mỹ , Nhật, Úc vv sử dụng rất nhiều Đồ thị d-t có 2 trục d và t vuông góc với nhau , còn các đường đẳng entanpi I=const tạo thành gốc 135o so với trục t. Các đường ϕ = const là những đường cong tương tự như trên đồ thị I-d. Có thể coi đồ thị d-t là hình ảnh của đồ thị I-d qua một gương phản chiếu. Hình 1.2 : Đồ thị t-d của không khí ẩm Đồ thị d-t chính là đồ thị t-d khi xoay 90o , được Carrrier xây dựng năm 1919 nên thường được gọi là đồ thị Carrier. Trục tung là độ chứa hơi d (g/kg), bên cạnh là hệ số nhiệt hiện SHF (Sensible) Trục hoành là nhiệt độ nhiệt kế khô t (oC) Trên đồ thị có các đường tham số - Đường I=const tạo với trục hoành một góc 135o. Các giá trị entanpi của không khí cho tbên cạnh đường ϕ=100%, đơn vị kJ/kg không khí khô 6
  7. - Đường ϕ=const là những đường cong lõm, càng đi lên phía trên (d tăng) ϕ càng lớn. Trên đường ϕ=100% là vùng sương mù. - Đường thể tích riêng v = const là những đường thẳng nghiêng song song với nhau, đơn vị m3/kg không khí khô. - Ngoài ra trên đồ thị còn có đường Ihc là đường hiệu chỉnh entanpi (sự sai lệch giữa entanpi không khí bão hoà và chưa bão hoà) 1.4 MỘT SỐ QUÁ TRÌNH CƠ BẢN TRÊN ĐỒ THỊ I-d 1.4.1 Quá trình thay đổi trạng thái của không khí . Quá trình thay đổi trạng thái của không khí ẩm từ trạng thái A (tA, ϕA) đến B (tB, ϕB) được biểu thị bằng đoạn thẳng AB, mủi tên chỉ chiều quá trình gọi là tia quá trình. IA I A I B α B 45° C ϕ=100% D d Hình 1.3 : Ý nghĩa hình học của ε Đặt (IA - IB)/(dA-dB) = ∆I/∆d =εAB gọi là hệ số góc tia của quá trình AB Ta hãy xét ý nghĩa hình học của hệ số εAB Ký hiệu góc giữa tia AB với đường nằm ngang là α. Ta có ∆I = IB - IA = m.AD ∆d= dB - dA = n.BC Trong đó m, n là tỉ lệ xích của các trục toạ độ. Từ đây ta có εAB = ∆I/∆d = m.AD/n.BC o εAB = (tgα + tg45 ).m/n = (tgα + 1).m/n Như vậy trên trục toạ độ I-d có thể xác định tia AB thông qua giá trị εAB . Để tiện cho việc sử dụng trên đồ thị ở ngoài biên người ta vẽ thêm các đường ε = const . Các đường ε = const có các tính chất sau : - Hệ số góc tia ε phản ánh hướng của quá trình AB, mỗi quá trình ε có một giá trị nhất định. - Các đường ε có trị số như nhau thì song song với nhau. - Tất cả các đường ε đều đi qua góc tọa độ (I=0 và d=0). 7
  8. 1.4.2 Quá trình hòa trộn hai dòng không khí. Trong kỹ thuật điều hòa không khí người ta thường gặp các quá trình hòa trộn 2 dòng không khí ở các trạng thái khác nhau để đạt được một trạng thái cần thiết. Quá trình này gọi là quá trình hoà trộn. Giả sử hòa trộn một lượng không khí ở trạng thái A(IA, dA) có khối lượng phần khô là LA với một lượng không khí ở trạng thái B(IB, dB) có khối lượng phần khô là LB và thu được một lượng không khí ở trạng thái C(IC, dC) có khối lượng phần khô là LC. Ta xác định các thông số của trạng thái hoà trộn C. I IA A I I C 00% B C ϕ=1 B d ddB C dA Hình 1.4 : Quá trình hoà trộn trên đồ thị I-d Ta có các phương trình: - Cân bằng khối lượng LC = LA + LB (1-11) - Cân bằng ẩm dC.LC = dA .LA + dB .LB (1-12) - Cân bằng nhiệt IC.LC = IA .LA + IB .LB (1-13) Thế (a) vào (b), (c) và trừ theo vế ta có : (IA - IC).LA = (IC - IB).LB (dA - dC).LA = (dC - dB).LB hay : Từ biểu thức này ta rút ra: I A − I C I C − I B (1-14) = d A − d C d C − d B I − I d − d L A C = A C = B (1-15) I C − I B d C − d B LA - Phương trình (1-14) là các phương trình đường thẳng AC và BC, các đường thẳng này có cùng hệ số góc tia và chung điểm C nên ba điểm A, B, C thẳng hàng. Điểm C nằm trên đoạn AB. - Theo phương trình (1-15) suy ra điểm C nằm trên AB và chia đoạn AB theo tỷ lệ LB/LA 8
  9. Trạng thái C được xác định như sau : LA LB I C = I A . + I B . (1-16) LC LC LA LB d C = d A . + d B . (1-17) LC LC * * * 9
  10. CHƯƠNG 2 MÔI TRƯỜNG KHÔNG KHÍ VÀ CHỌN THÔNG SỐ TÍNH TOÁN CHO CÁC HỆ THỐNG ĐIỀU HOÀ Để thiết kế hệ thống điều hoà không khí cần phải tiến hành chọn các thông số tính toán của không khí ngoài trời và thông số tiện nghi trong nhà. Các thông số đó bao gồm: - Nhiệt độ t (oC) . - Độ ẩm tương đối ϕ (%) . - Tốc độ chuyển động không khí trong phòng ω (m/s) . - Độ ồn cho phép trong phòng Lp (dB) . 3 - Lượng khí tươi cung cấp LN (m /s) . - Nồng độ cho phép của các chất độc hại trong phòng . 2.1 ẢNH HƯỞNG CỦA MÔI TRƯỜNG TỚI CON NGƯỜI VÀ SẢN XUẤT 2.1.1 Ảnh hưởng của môi trường đến con người 2.1.1.1 Nhiệt độ. Nhiệt độ là yếu tố gây cảm giác nóng lạnh đối với con người. Cơ thể con người có nhiệt o độ là tct = 37 C. Trong quá trình vận động cơ thể con người luôn luôn toả ra nhiệt lượng qtỏa. Lượng nhiệt do cơ thể toả ra phụ thuộc vào cường độ vận động. Để duy trì thân nhiệt cơ thể thường xuyên trao đổi nhiệt với môi trường. Sự trao đổi nhiệt đó sẽ biến đổi tương ứng với cường độ vận động. Có 2 hình thức trao đổi nhiệt với môi trường xung quanh. - Truyền nhiệt : Truyền nhiệt từ cơ thể con người vào môi trường xung quanh dưới 3 cách: dẫn nhiệt, đối lưu và bức xạ. Nói chung nhiệt lượng trao đổi theo hình thức truyền nhiệt phụ thuộc chủ yếu vào độ chênh nhiệt độ giữa cơ thể và môi trường xung quanh. Lượng nhiệt trao đổi này gọi là nhiệt hiện . Ký hiệu qh Khi nhiệt độ môi trường tmt nhỏ hơn thân nhiệt, cơ thể truyền nhiệt cho môi trường, khi nhiệt độ môi trường lớn hơn thân nhiệt thì cơ thể nhận nhiệt từ môi trường. Khi nhiệt độ môi trường bé, ∆t = tct-tmt lớn, qh lớn, cơ thể mất nhiều nhiệt nên có cảm giác lạnh và ngược lại khi nhiệt độ môi trường lớn khả năng thải nhiệt ra môi trường giảm nên có cảm giác nóng. Nhiệt hiện qh phụ thuộc vào ∆t = tct-tmt và tốc độ chuyển động của không khí . Khi nhiệt độ môi trường không đổi, tốc độ không khí ổn định thì qh không đổi. Nếu cường độ vận động của con người thay đổi thì lượng nhiệt hiện qh không thể cân bằng với lượng nhiệt do cơ thể sinh ra. Để thải hết nhiệt lượng do cơ thể sinh ra, cần có hình thức trao đổi thứ 2, đó là toả ẩm. - Tỏa ẩm : Ngoài hình thức truyền nhiệt cơ thể còn trao đổi nhiệt với môi trường xung quanh thông qua tỏa ẩm. Tỏ ẩm có thể xảy ra trong mọi phạm vi nhiệt độ và khi nhiệt độ môi trường càng cao thì cường độ càng lớn. Nhiệt năng của cơ thể được thải ra ngoài cùng với hơi nước dưới dạng nhiệt ẩn, nên lượng nhiệt này được gọi là nhiệt ẩn. Ký hiệu qw. 1
  11. Ngay cả khi nhiệt độ môi trường lớn hơn 37oC, cơ thể con người vẫn thải được nhiệt ra môi trường thông qua hình thức tỏa ẩm, đó là thoát mồ hôi . Người ta đã tính được rằng cứ thoát 1 g mồ hôi thì cơ thể thải được một lượng nhiệt xấp xỉ 2500J. Nhiệt độ càng cao, độ ẩm môi trường càng bé thì mức độ thoát mồ hôi càng nhiều. Nhiệt ẩn có giá trị càng cao khi hình thức thải nhiệt bằng truyền nhiệt không thuận lợi. Tổng nhiệt lượng truyền nhiệt và tỏa ẩm phải đảm bảo luôn luôn bằng lượng nhiệt do cơ thể sản sinh ra. Mối quan hệ giữa 2 hình thức phải luôn luôn đảm bảo : qtỏa = qh + qW Đây là một phương trình cân bằng động, giá trị của mỗi một đại lượng trong phương trình có thể thay đổi tuỳ thuộc vào cường độ vận động, nhiệt độ, độ ẩm, tốc độ chuyển động của không khí môi trường xung quanh vv Nếu vì một lý do gì đó mất cân bằng thì sẽ gây rối loạn và sinh đau ốm Nhiệt độ thích hợp nhất đối với con người nằm trong khoảng 22-27 oC . 2.1.1.2 Độ ẩm tương đối Độ ẩm tương đối có ảnh hưởng quyết định tới khả năng thoát mồ hôi vào trong môi trường không khí xung quanh. Quá trình này chỉ có thể tiến hành khi ϕ < 100%. Độ ẩm càng thấp thì khả năng thoát mồ hôi càng cao, cơ thể cảm thấy dễ chịu. Độ ẩm quá cao, hay quá thấp đều không tốt đối với con người. - Độ ẩm cao : Khi độ ẩm tăng lên khả năng thoát mồ hôi kém, cơ thể cảm thấy rất nặng nề , mệt mỏi và dễ gây cảm cúm. Người ta nhận thấy ở một nhiệt độ và tốc độ gió không đổi khi độ ẩm lớn khả năng bốc mồ hôi chậm hoặc không thể bay hơi được, điều đó làm cho bề mặt da có lớp mồ hôi nhớp nháp. - Độ ẩm thấp : Khi độ ẩm thấp mồi hôi sẽ bay hơi nhanh làm da khô, gây nứt nẻ chân tay, môi vv. Như vậy độ ẩm quá thấp cũng không tốt cho cơ thể. Độ ẩm thích hợp đối với cơ thể con người nằm trong khoảng tương đối rộng ϕ= 50÷ 70%. 2.1.1.3 Tốc độ không khí Tốc độ không khí xung quanh có ảnh hưởng đến cường độ trao đổi nhiệt và trao đổi chất (thoát mồ hôi) giữa cơ thể con người với môi trường xung quanh. Khi tốc độ lớn cường độ trao đổi nhiệt ẩm tăng lên. Vì vậy khi đứng trước gió ta cảm thấy mát và thường da khô hơn nơi yên tĩnh trong cùng điều kiện về độ ẩm và nhiệt độ . Khi nhiệt độ không khí thấp, tốc độ quá lớn thì cơ thể mất nhiệt gây cảm giác lạnh. Tốc độ gió thích hợp tùy thuộc vào nhiều yếu tố : nhiệt độ gió, cường độ lao động, độ ẩm, trạng thái sức khỏe của mỗi người. . .vv. Trong kỹ thuật điều hòa không khí người ta chỉ quan tâm tốc độ gió trong vùng làm việc, tức là vùng dưới 2m kể từ sàn nhà. Đây là vùng mà một người bất kỳ khi đứng trong phòng đều lọt thỏm vào trong khu vực đó. 2.1.1.4 Nồng độ các chất độc hại. Khi trong không khí có các chất độc hại chiếm một tỷ lệ lớn thì nó sẽ có ảnh hưởng đến sức khỏe con người. Mức độ tác hại của mỗi một chất tùy thuộc vào bản chất chất khí, nồng độ của nó trong không khí, thời gian tiếp xúc của con người, tình trạng sức khỏe vv. Các chất độc hại bao gồm các chất chủ yếu sau : - Bụi : Bụi ảnh hưởng đến hệ hô hấp . Tác hại của bụi phụ thuộc vào bản chất bụi, nồng độ và kích thước của nó. Kích thước càng nhỏ thì càng có hại vì nó tồn tại trong không 2
  12. khí lâu và khả năng thâm nhập vào cơ thể sâu hơn và rất khó khử bụi. Hạt bụi lớn thì khả năng khử dễ dàng hơn nên ít ảnh hưởng đến con người. Bụi có 2 nguồn gốc hữu cơ và vô cơ. - Khí CO2, SO2 . . Các khí này không độc, nhưng khi nồng độ của chúng lớn thì sẽ làm giảm nồng độ O2 trong không khí, gây nên cảm giác mệt mỏi. Khi nồng độ quá lớn có thể dẫn đến ngạt thở . - Các chất độ hại khác : Trong quá trình sản xuất và sinh hoạt trong không khí có thể có lẫn các chất độc hại như NH3, Clo . . vv là những chất rất có hại đến sức khỏe con người. Cho tới nay không có tiêu chuẩn chung để đánh giá mức độ ảnh hưởng tổng hợp của các chất độc hại trong không khí. Tuy các chất độc hại có nhiều nhưng trên thực tế trong các công trình dân dụng chất độc hại phổ biến nhất đó là khí CO2 do con người thải ra trong quá trình hô hấp. Vì thế trong kỹ thuật điều hoà người ta chủ yếu quan tâm đến nồng độ CO2. Để đánh giá mức độ ô nhiểm người ta dựa vào nồng độ CO2 có trong không khí. Bảng 2.1 trình bày mức độ ảnh hưởng của nồng độ CO2 trong không khí . Theo bảng này khi nồng độ CO2 trong không khí chiếm 0,5% theo thể tích là gây nguy hiểm cho con người. Nồng độ cho phép trong không khí là 0,15% theo thể tích. Bảng 2.1 : Ảnh hưởng của nồng độ CO2 trong không khí Nồng độ CO2 Mức độ ảnh hưởng % thể tích 0,07 - Chấp nhận được ngay cả khi có nhiều người trong phòng 0,10 - Nồng độ cho phép trong trường hợp thông thường 0,15 - Nồng độ cho phép khi dùng tính toán thông gió 0,20-0,50 - Tương đối nguy hiểm > 0,50 - Nguy hiểm 4 ÷ 5 - Hệ thần kinh bị kích thích gây ra thở sâu và nhịp thở gia tăng. Nếu hít thở trong môi trường này kéo dài thì có thể gây ra nguy hiểm. 8 - Nếu thở trong môi trường này kéo dài 10 phút thì mặt đỏ bừng và đau đầu 18 hoặc lớn hơn - Hết sức nguy hiểm có thể dẫn tới tử vong. 2.1.1.5 Độ ồn Người ta phát hiện ra rằng khi con người làm việc lâu dài trong khu vực có độ ồn cao thì lâu ngày cơ thể sẽ suy sụp, có thể gây một số bệnh như : Stress, bồn chồn và gây các rối loạn gián tiếp khác. Độ ồn tác động nhiều đến hệ thần kinh. Mặt khác khi độ ồn lớn có thể làm ảnh hưởng đến mức độ tập trung vào công việc hoặc đơn giản hơn là gây sự khó chịu cho con người. Ví dụ các âm thanh của quạt trong phòng thư viện nếu quá lớn sẽ làm mất tập trung của người đọc và rất khó chịu. Vì vậy độ ồn là một tiêu chuẩn quan trọng không thể bỏ qua khi thiết kế một hệ thống điều hòa không khí. Đặc biệt các hệ thống điều hoà cho các đài phát thanh, truyền hình, các phòng studio, thu âm thu lời thì yêu cầu về độ ồn là quan trọng nhất. 3
  13. 2.1.2 Ảnh hưởng của môi trường đến sản xuất. Con người là một yếu tố vô cùng quan trọng trong sản xuất. Các thông số khí hậu có ảnh hưởng nhiều tới con người có nghĩa cũng ảnh hưởng tới năng suất và chất lượng sản phẩm một cách gián tiếp. Ngoài ra các yếu tố khí hậu cũng ảnh hưởng trực tiếp tới chất lượng sản phẩm. Trong phần này chúng ta chỉ nghiên cứu ở khía cạnh này. 2.1.2.1. Nhiệt độ Nhiệt độ có ảnh hưởng đến nhiều loại sản phẩm. Một số quá trình sản xuất đòi hỏi nhiệt độ phải nằm trong một giới hạn nhất định. Ví dụ : - Kẹo Sôcôla : 7 - 8 oC - Kẹo cao su : 20oC - Bảo quả rau quả : 10oC - Đo lường chính xác : 20 - 24 oC - Dệt : 20 - 32oC - Chế biến thịt, thực phẩm : Nhiệt độ cao làm sản phẩm chóng bị thiu . Bảng 2.2 dưới đây là tiêu chuẩn về nhiệt độ và độ ẩm của một số quá trình sản xuất thường gặp Bảng 2.2 : Điều kiện công nghệ của một số quá trình Quá trình Công nghệ sản xuất Nhiệt độ, oC Độ ẩm, % - Đóng và gói sách 21 ÷ 24 45 Xưởng in - Phòng in ấn 24 ÷ 27 45 ÷ 50 - Nơi lưu trữ giấy 20 ÷ 33 50 ÷ 60 - Phòng làm bản kẽm 21 ÷ 33 40 ÷ 50 - Nơi lên men 3 ÷ 4 50 ÷ 70 Sản xuất bia - Xử lý malt 10 ÷ 15 80 ÷ 85 - Ủ chín 18 ÷ 22 50 ÷ 60 - Các nơi khác 16 ÷ 24 45 ÷ 65 - Nhào bột 24 ÷ 27 45 ÷ 55 Xưởng bánh - Đóng gói 18 ÷ 24 50 ÷ 65 - Lên men 27 70 ÷ 80 - Chế biến bơ 16 60 Chế biến thực phẩm - Mayonaise 24 40 ÷ 50 - Macaloni 21 ÷ 27 38 Công nghệ chính xác - Lắp ráp chính xác 20 ÷ 24 40 ÷ 50 - Gia công khác 24 45 ÷ 55 - Chuẩn bị 27 ÷ 29 60 Xưởng len - Kéo sợi 27 ÷ 29 50 ÷ 60 - Dệt 27 ÷ 29 60 ÷ 70 - Chải sợi 22 ÷ 25 55 ÷ 65 Xưởng sợi bông - Xe sợi 22 ÷ 25 60 ÷ 70 - Dệt và điều tiết cho sợi 22 ÷ 25 70 ÷ 90 2.1.2.2 Độ ẩm tương đối Độ ẩm cũng có ảnh nhiều đến một số sản phẩm 4
  14. - Khi độ ẩm cao có thể gây nấm mốc cho một số sản phẩm nông nghiệp và công nghiệp nhẹ. - Khi độ ẩm thấp sản phẩm sẽ khô, giòn không tốt hoặc bay hơi làm giảm chất lượng sản phẩm hoặc hao hụt trọng lượng. Ví dụ - Sản xuất bánh kẹo : Khi độ ẩm cao thì kẹo chảy nước. Độ ẩm thích hợp cho sản xuất bánh kẹo là ϕ = 50-65% - Ngành vi điện tử , bán dẫn : Khi độ ẩm cao làm mất tính cách điện của các mạch điện 2.1.2.3 Vận tốc không khí . Tốc độ không khí cũng có ảnh hưởng đến sản xuất nhưng ở một khía cạnh khác - Khi tốc độ lớn : Trong nhà máy dệt, sản xuất giấy . . sản phẩm nhẹ sẽ bay khắp phòng hoặc làm rối sợi. Trong một số trường hợp thì sản phẩm bay hơi nước nhanh làm giảm chất lượng. Vì vậy trong một số xí nghiệp sản xuất người ta cũng qui định tốc độ không khí không được vượt quá mức cho phép. 2.1.2.4. Độ trong sạch của không khí. Có nhiều ngành sản xuất bắt buộc phải thực hiện trong phòng không khí cực kỳ trong sạch như sản xuất hàng điện tử bán dẫn, tráng phim, quang học. Một số ngành thực phẩm cũng đòi hỏi cao về độ trong sạch của không khí tránh làm bẩn các thực phẩm. 2.2 PHÂN LOẠI CÁC HỆ THỐNG ĐIỀU HOÀ KHÔNG KHÍ 2.2.1 Định nghĩa Điều hòa không khí còn gọi là điều tiết không khí là quá trình tạo ra và giữ ổn định các thông số trạng thái của không khí theo một chương trình định sẵn không phụ thuộc vào điều kiện bên ngoài. Khác với thông gió, trong hệ thống điều hòa , không khí trước khi thổi vào phòng đã được xử lý về mặt nhiệt ẩm. Vì thế điều tiết không khí đạt đạt hiệu quả cao hơn thông gió. 2.2.2. Phân loại các hệ thống điều hoà không khí Có rất nhiều cách phân loại các hệ thống điều hoà không khí. Dưới đây trình bày 2 cách phổ biến nhất : - Theo mức độ quan trọng : + Hệ thống điều hòa không khí cấp I : Hệ thống điều hoà có khả năng duy trì các thông số tính toán trong nhà với mọi phạm vi thông số ngoài trời. + Hệ thống điều hòa không khí cấp II : Hệ thống điều hoà có khả năng duy trì các thông số tính toán trong nhà với sai số không qúa 200 giờ trong 1 năm. + Hệ thống điều hòa không khí cấp III : Hệ thống điều hoà có khả năng duy trì các thông số tính toán trong nhà với sai số không qúa 400 giờ trong 1 năm. Khái niệm về mức độ quan trọng mang tính tương đối và không rõ ràng. Chọn mức độ quan trọng là theo yêu cầu của khách hàng và thực tế cụ thể của công trình. Tuy nhiên hầu hết các hệ thống điều hoà trên thực tế được chọn là hệ thống điều hoà cấp III. 5
  15. - Theo chức năng : + Hệ thống điều hoà cục bộ : Là hệ thống nhỏ chỉ điều hòa không khí trong một không gian hẹp, thường là một phòng. Kiểu điều hoà cục bộ trên thực tế chủ yếu sử dụng các máy điều hoà dạng cửa sổ , máy điều hoà kiểu rời (2 mãnh) và máy điều hoà ghép. + Hệ thống điều hoà phân tán : Hệ thống điều hòa không khí mà khâu xử lý nhiệt ẩm phân tán nhiều nơi. Có thể ví dụ hệ thống điều hoà không khí kiểu khuyếch tán trên thực tế như hệ thống điều hoà kiểu VRV (Variable Refrigerant Volume ) , kiểu làm lạnh bằng nước (Water chiller) hoặc kết hợp nhiều kiểu máy khác nhau trong 1 công trình. + Hệ thống điều hoà trung tâm : Hệ thống điều hoà trung tâm là hệ thống mà khâu xử lý không khí thực hiện tại một trung tâm sau đó được dẫn theo hệ thống kênh dẫn gió đến các hộ tiêu thụ. Hệ thống điều hoà trung tâm trên thực tế là máy điều hoà dạng tủ, ở đó không khí được xử lý nhiệt ẩm tại tủ máy điều hoà rồi được dẫn theo hệ thống kênh dẫn đến các phòng. 2.3 CHỌN THÔNG SỐ TÍNH TOÁN CÁC HỆ THỐNG ĐIỀU HOÀ KHÔNG KHÍ Việc chọn các thông số tính toán bao gồm thông số tính toán trong nhà và ngoài trời. Đối với thông số tính toán trong nhà tuỳ thuộc vào mục đích của hệ thống điều hoà. - Đối với hệ thống điều hoà dân dụng, tức là hệ thống điều hoà chỉ nhằm mục đích tạo điều kiện tiện nghi cho con người. Các thông số tính toán trong nhà được lựa chọn theo các tiêu chuẩn sẽ nêu ở bảng 2-3 dưới đây. - Đối với hệ thống điều hoà công nghiệp , tức hệ thống điều hoà phục vụ công nghệ của một quá trình sản xuất cụ thể. Trong trường hợp này , người thiết kế phải lấy số liệu thực tế từ nhà sản xuất là chính xác và phù hợp nhất . Các thông số tính toán này có thể tham khảo ở bảng dữ liệu 1.2. 2.3.1 Chọn nhiệt độ và độ ẩm tính toán 2.3.1.1. Nhiệt độ và độ ẩm trong nhà Nhiệt độ và độ ẩm trong nhà được chọn tuỳ thuộc vào chức năng của phòng. Có thể chọn nhiệt độ và độ ẩm trong nhà theo bảng 2.3: Bảng 2.3 Nhiệt độ và độ ẩm tính toán trong phòng MÙA HÈ MÙA ĐÔNG KHU VỰC Hạng sang Bình thường o o o tT, C ϕ, % tT, C ϕ, % tT, C ϕ, % Khu công cộng : Chung cư, Nhà ở, Khách sạn, Văn 23 ÷ 24 45 ÷ 50 25 ÷ 26 45 ÷ 50 23 ÷ 25 30 ÷ 35 phòng, Bệnh viện, trường học Cửa hàng, cửa hiệu : Ngân hàng, của hàng bánh 24 ÷ 26 45 ÷ 50 25 ÷ 27 45 ÷ 50 22 ÷ 24 30 ÷ 35 kẹo, mỹ phẩm, siêu thị Phòng thu âm thu lời, Nhà thờ, Quán bar, nhà hàng, 24 ÷ 26 50 ÷ 55 26 ÷ 27 50 ÷ 60 22 ÷ 24 35 ÷ 40 nhà bếp. . . Nhà máy, phân xưởng, xí nghiệp 25 ÷ 27 45 ÷ 55 27 ÷ 29 50 ÷ 60 20 ÷ 23 30 ÷ 35 6
  16. 2.3.1. 2 Nhiệt độ và độ ẩm ngoài trời Thông số ngoài trời được sử dụng để tính toán tải nhiệt được căn cứ vào tầm quan trọng của công trình, tức là tùy thuộc vào cấp của hệ thống điều hòa không khí và lấy theo bảng 2- 4 dưới đây: Bảng 2.4 Nhiệt độ và độ ẩm tính toán ngoài trời o Hệ thống Nhiệt độ tN , C Độ ẩm ϕN, % Hệ thống cấp I + Mùa hè tmax ϕ(tmax) + Mùa đông tmin ϕ(tmin) Hệ thống cấp II tb tb + Mùa hè 0,5(tmax + t max) 0,5[ϕ (tmax) + ϕ(t max)] tb tb + Mùa đông 0,5(tmin + t min) 0,5[ϕ (tmin) + ϕ(t min)] Hệ thống cấp III tb tb + Mùa hè t max ϕ(t max) tb tb + Mùa đông t min ϕ(t min) Trong đó : tmax , tmin Nhiệt độ lớn nhất và nhỏ nhất tuyệt đối trong năm đo lúc 13÷15 giờ, tham khảo phụ lục PL-1 tb tb t max , t min Nhiệt độ của tháng nóng nhất trong năm, tham khảo phụ lục PL-2, và PL-3. ϕ(tmax) , ϕ(tmin ) Độ ẩm ứng với nhiệt độ lớn nhất và nhỏ nhất tuyệt đối trong năm. Tuy tb nhiên do hiện nay các số liệu này ở Việt Nam chưa có nên có thể lấy bằng ϕ(t max) và tb ϕ(t min) tb tb ϕ(t max) , ϕ(t min ) Độ ẩm trung bình ứng với tháng có nhiệt độ lớn nhất và nhỏ nhất trong năm, tham khảo phụ lục PL-4 2.3.2 Chọn tốc độ không khí tính toán trong phòng Tốc độ không khí lưu động được lựa chọn theo nhiệt độ không khí trong phòng nêu ở bảng 2.5. Khi nhiệt độ phòng thấp cần chọn tốc độ gió nhỏ , nếu tốc độ quá lớn cơ thể mất nhiều nhiệt, sẽ ảnh hưởng sức khoẻ con người. Để có được tốc độ hợp lý cần chọn loại miệng thổi phù hợp và bố trí hợp lý . Bảng 2.5 Tốc độ tính toán của không khí trong phòng o Nhiệt độ không khí, C Tốc độ ωk, m/s 16 ÷ 20 30 1,3 ÷ 1,5 7
  17. 2.3.3 Độ ồn cho phép trong phòng Độ ồn có ảnh hưởng đến trạng thái và mức độ tập trung vào công việc của con người. Mức độ ảnh hưởng đó tuỳ thuộc vào công việc đang tham gia, hay nói cách khác là tuỳ thuộc vào tính năng của phòng. Người ta đã qui định độ ồn cho phép cho từng khu vực điều hòa nhất định nêu ở bảng 2.6. Đối với các máy công suất lớn, khi chọn cần xem xét độ ồn của máy có đảm bảo yêu cầu để lắp đặt vào vị trí hay không. Trong trường hợp độ ồn quá lớn cần có các biện pháp khử ồn cần thiết hoặc lắp đặt ở phòng máy riêng biệt. Bảng 2.6 Độ ồn cho phép trong phòng Giờ trong Độ ồn cực đại cho phép, Khu vực ngày dB Cho phép Nên chọn - Bệnh viện, Khu điều dưỡng 6 - 22 35 30 22 - 6 30 30 - Giảng đường, lớp học 40 35 - Phòng máy vi tính 40 35 - Phòng làm việc 50 45 - Phân xưởng sản xuất 85 80 - Nhà hát, phòng hòa nhạc 30 30 - Phòng hội thảo, hội họp 55 50 - Rạp chiếu bóng 40 35 - Phòng ở 6 - 22 40 30 22 - 6 30 30 - Khách sạn 6 - 22 45 35 22 - 6 40 30 - Phòng ăn lớn, quán ăn lớn 50 45 2.3.4 Nồng độ các chất độc hại. Để đánh giá mức độ ô nhiểm người ta dựa vào nồng độ CO2 có trong không khí, vì CO2 là chất độc hại phổ biến nhất do con người thải ra trong quá trình sinh hoạt và sản xuất. Lưu lượng không khí tươi cần thiết cung cấp cho 1 người trong 1 giờ được xác định như sau : VK = VCO2 / (β-a) (2-1) Ở đây : 3 - VCO2 là lượng CO2 do con người thải ra : m /h.người - β Nồng độ CO2 cho phép, % thể tích. Thường chọn β = 0,15 - a Nồng độ CO2 trong không khí môi trường xung quanh, % thể tích. Thường chọn a=0,03%. 3 - VK Lưu lượng không khí cần cấp, m /h.người Lượng CO2 do 01 người thải ra phụ thuộc vào cường độ lao động, nên Vk cũng phụ thuộc vào cường độ lao động. Bảng 2.7 : Lượng không khí tươi cần cấp 3 Cường độ vận động VCO2, VK, m /h.người m3/h.người β=0,1 β=0,15 8
  18. - Nghỉ ngơi 0,013 18,6 10,8 - Rất nhẹ 0,022 31,4 18,3 - Nhẹ 0,030 43,0 25,0 - Trung bình 0,046 65,7 38,3 - Nặng 0,074 106,0 61,7 Bảng 2.8 đưa ra nồng độ cho phép của một số chất độc hại khác. Căn cứ vào nồng độ cho phép này và phương trình (2-1) có thể xác định được lượng không khí tươi cần cung cấp để giảm nồng độ đến mức yêu cầu. Bảng 2.8 : Nồng độ cho phép của một số chất TT Tên chất Nồng độ cho TT Tên chất Nồng độ cho phép phép mg/m3 mg/m3 1 Acrolein 2 19 Đicloetan 10 2 Amoniac 2 20 Đivinin 100 3 Ancolmetylic 50 21 Ete etylic 300 4 Anilin 5 22 Etylen oxit 1 5 Axeton 200 23 Hidrosunfua 100 6 Axit acetic 5 24 Iot 1 7 Axit nitric 5 25 Kẽm oxit 5 8 Axit sunfuric 2 26 Magie oxit 15 9 Bezen 50 27 Metylenclorua 50 10 Cacbon monooxit 30 28 Naphtalen 20 11 Cacbon dioxit 1%o 29 Nicotin 0,5 12 Clo 0,1 30 Nitơ oxit 5 13 Clodioxit 1 31 Ôzôn 0,1 14 Clobenzen 50 32 Phênôn 5 15 Dầu hoả 300 33 Bụi thuốc lá, chè 3 16 Dầu thông 300 34 Bụi có SiO2 1 17 Đioxit sunfua 20 35 Bụi xi măng, đất 6 18 Điclobezen 20 Trong trường hợp trong không gian điều hoà có hút thuốc lá, lượng không khí tươi cần cung cấp đòi hỏi nhiều hơn, để loại trừ ảnh hưởng của khói thuốc. Bảng 2.9 : Lượng khí tươi cần cung cấp khi có hút thuốc Mức độ hút thuốc, Lượng không khí tươi điếu/h.người cần cung cấp, m3/h.người 0,8 ÷ 1,0 13 ÷ 17 1,2 ÷ 1,6 20 ÷ 26 2,5 ÷ 3 42 ÷ 51 3 ÷ 5,1 51 ÷ 85 ♦ ♦ ♦ 9
  19. CHƯƠNG 3 CÂN BẰNG NHIỆT VÀ CÂN BẰNG ẨM 3.1 PHƯƠNG TRÌNH CÂN BẰNG NHIỆT Xét một hệ nhiệt động bất kỳ, hệ luôn luôn chịu tác động của các nguồn nhiệt bên ngoài và bên trong. Các tác động đó người ta gọi là các nhiễu loạn về nhiệt . Thực tế các hệ nhiệt động chịu tác động của các nhiễu loạn sau : - Nhiệt tỏa ra từ các nguồn nhiệt bên trong hệ gọi là các nguồn nhiệt toả : ΣQtỏa - Nhiệt truyền qua kết cấu bao che gọi là nguồn nhiệt thẩm thấu : ΣQtt Tổng hai thành phần trên gọi là nhiệt thừa QT = ΣQtỏa + ΣQtt (3-1) Để duy trì chế độ nhiệt ẩm trong không gian điều hoà , trong kỹ thuật điều hoà không khí nguời ta phải cấp tuần hoàn cho hệ một lượng không khí có lưu lượng L (kg/s) ở trạng thái V(tV, ϕV) nào đó và lấy ra cũng lượng như vậy nhưng ở trạng thái T(tT,ϕT). Như vậy lượng không khí này đã lấy đi từ phòng một lượng nhiệt bằng QT. Ta có phương trình cân bằng nhiệt như sau : QT = Lq.(IT - IV) (3-2) * Phương trình cân bằng ẩm Tương tự như trong hệ luôn luôn có các nhiễu loạn về ẩm sau - Ẩm tỏa ra từ các nguồn bên trong hệ : ΣWtỏa - Ẩm thẩm thấu qua kết cấu bao che : ΣWtt Tổng hai thành phần trên gọi là ẩm thừa WT = ΣWtỏa + ΣWtt (3-3) Để hệ cân bằng ẩm và có trạng thái không khí trong phòng không đổi T(tT, ϕT) nguời ta phải luôn luôn cung cấp cho hệ một lượng không khí có lưu lượng L (kg/s) ở trạng thái V(tV, ϕV). Như vậy lượng không khí này đã lấy đi từ phòng một lượng ẩm bằng WT. Ta có phương trình cân bằng ẩm như sau : WT = LW.(dT - dV) (3-4) * Phương trình cân bằng nồng độ chất độc hại (nếu có) Để khử các chất độc hại phát sinh ra trong phòng người ta thổi vào phòng lưu lượng gió Lz (kg/s) sao cho : Gđ = Lz.(zT - zV) , kg/s (3-5) Gđ : Lưu lượng chất độc hại tỏa ra và thẩm thấu qua kết cấu bao che, kg/s ZT và Zv : Nồng độ theo khối lượng của chất độc hại của không khí cho phép trong phòng và thổi vào Nhiệt thừa, ẩm thừa và lượng chất độc toả ra là cơ sở để xác định năng suất của các thiết bị xử lý không khí . Trong phần dưới đây chúng ta xác định hai thông số quan trọng nhất là tổng nhiệt thừa QT và ẩm thừa WT. 21
  20. 3.2 XÁC ĐỊNH LƯỢNG NHIỆT THỪA QT 3.2.1 Nhiệt do máy móc thiết bị điện tỏa ra Q1 3.2.1.1 Nhiệt toả ra từ thiết bị dẫn động bằng động cơ điện Máy móc sử dụng điện gồm 2 cụm chi tiết là động cơ điện và cơ cấu dẫn động. Tổn thất của các máy bao gồm tổn thất ở động cơ và tổn thất ở cơ cấu dẫn động. Theo vị trí tương đối của 2 cụm chi tiết này ta có 3 trường hợp có thể xãy ra : - Trường hợp 1 : Động cơ và chi tiết dẫn động nằm hoàn toàn trong không gian điều hoà - Trường hợp 2 : Động cơ nằm bên ngoài, chi tiết dẫn động nằm bên trong - Trường hợp 3: Động cơ nằm bên trong, chi tiết dẫn động nằm bên ngoài. Nhiệt do máy móc toả ra chỉ dưới dạng nhiệt hiện. Gọi N và η là công suất và hiệu suất của động cơ điện. Công suất của động cơ điện N thường là công suất tính ở đầu ra của động cơ. Vì vậy : - Trường hợp 1: Toàn bộ năng lượng cung cấp cho động cơ đều được biến thành nhiệt năng và trao đổi cho không khí trong phòng. Nhưng do công suất N được tính là công suất đầu ra nên năng lượng mà động cơ tiêu thụ là N q = (3-6) 1 η η - Hiệu suất của động cơ - Trường hợp 2 : Vì động cơ nằm bên ngoài, cụm chi tiết chuyển động nằm bên trong nên nhiệt thừa phát ra từ sự hoạt động của động cơ chính là công suất N. q1 = N (3-7) - Trường hợp 3 : Trong trường này phần nhiệt năng do động cơ toả ra bằng năng lượng đầu vào trừ cho phần toả ra từ cơ cấu cơ chuyển động: N.(1−η) q = (3-8) 1 η Để tiện lợi cho việc tra cứu tính toán, tổn thất nhiệt cho các động cơ có thể tra cứu cụ thể cho từng trường hợp trong bảng 3-1 dưới đây: Bảng 3.1 : Tổn thất nhiệt của các động cơ điện Công Hiệu suất Tổn thất nhiệt q1, kW suất mô η Mô tơ và cơ cấu Mô tơ ngoài Mô tơ trong, cơ tơ đầu ( % ) truyền động đặt cơ cấu truyền cấu truyền động ra, kW trong phòng động trong phòng ngoài (1) (2) (3) (4) (5) 0,04 41 0,10 0,04 0,06 0,06 49 0,12 0,06 0,06 0,09 55 0,16 0,09 0,07 0,12 60 0,20 0,12 0,08 0,18 64 0,30 0,18 0,11 0,25 67 0,37 0,25 0,12 0,37 70 0,53 0,37 0,16 0,55 72 0,76 0,55 0,21 0,75 73 1,03 0,75 0,28 1,1 79 1,39 1,1 0,29 1,5 80 1,88 1,5 0,38 2,2 82 3,66 2,2 0,66 22
  21. 4,0 83 4,82 4,0 0,82 (1) (2) (3) (4) (5) 5,5 84 6,55 5,5 1,05 7,5 85 8,82 7,5 1,32 11 86 12,8 11 1,8 15 87 17,2 15 2,2 18,5 88 21,0 18,5 2,5 22 88 25,0 22 3,0 30 89 33,7 30 3,7 37 89 41,6 37 4,6 45 90 50,0 45 5,0 55 90 61,1 55 6,1 75 90 83,3 75 8,3 90 90 100 90 10,0 110 91 121 110 11 132 91 145 132 13 150 91 165 150 15 185 91 203 185 18 220 92 239 220 19 250 92 272 250 22 Cần lưu ý là năng lượng do động cơ tiêu thụ đang đề cập là ở chế độ định mức. Tuy nhiên trên thực tế động cơ có thể hoạt động non tải hoặc quá tải. Vì thế để chính xác hơn cần tiến hành đo cường độ dòng điện thực tế để xác định công suất thực. 3.2.1.2. Nhiệt toả ra từ thiết bị điện Ngoài các thiết bị được dẫn động bằng các động cơ điện, trong phòng có thể trang bị các dụng cụ sử dụng điện khác như : Ti vi, máy tính, máy in, máy sấy tóc vv. Đại đa số các thiết bị điện chỉ phát nhiệt hiện. Đối với các thiết bị điện phát ra nhiệt hiện thì nhiệt lượng toả ra bằng chính công suất ghi trên thiết bị. Khi tính toán tổn thất nhiệt do máy móc và thiết bị điện phát ra cần lưu ý không phải tất cả các máy móc và thiết bị điện cũng đều hoạt động đồng thời. Để cho công suất máy lạnh không quá lớn, cần phải tính đến mức độ hoạt động đồng thời của các động cơ. Trong trường hợp tổng quát: Q1 = Σq1.Ktt.kđt (3-9) Ktt - hệ số tính toán bằng tỷ số giữa công suất làm việc thực với công suất định mức. Kđt - Hệ số đồng thời, tính đến mức độ hoạt động đồng thời. Hệ số đồng thời của mỗi động cơ có thể coi bằng hệ số thời gian làm việc , tức là bằng tỷ số thời gian làm việc của động cơ thứ i, chia cho tổng thời gian làm việc của toàn bộ hệ thống. 3.2.2 Nhiệt tỏa ra từ các nguồn sáng nhân tạo Q2 Nguồn sáng nhân tạo ở đây đề cập là nguồn sáng từ các đèn điện. Có thể chia đèn điện ra làm 2 loại : Đèn dây tóc và đèn huỳnh quang. Nhiệt do các nguồn sáng nhân tạo toả ra chỉ ở dạng nhiệt hiện. - Đối với loại đèn dây tóc : Các loại đèn này có khả năng biến đổi chỉ 10% năng lượng đầu vào thành quang năng, 80% được phát ra bằng bức xạ nhiệt, 10% trao đổi với môi trường bên ngoài qua đối lưu và dẫn nhiệt . Như vậy toàn bộ năng lượng đầu vào dù biến đổi và phát ra dưới dạng quang năng hay nhiệt năng nhưng cuối cùng đều biến thành nhiệt và được không khí trong phòng hấp thụ hết. 23
  22. Q21 = NS , kW (3-10) NS - Tổng công suất các đèn dây tóc, kW - Đối với đèn huỳnh quang : Khoảng 25% năng lượng đầu vào biến thành quang năng, 25% được phát ra dưới dạng bức xạ nhiệt, 50% dưới dạng đối lưu và dẫn nhiệt. Tuy nhiên đối với đèn huỳnh quang phải trang bị thêm bộ chỉnh lưu , công suất bộ chấn lưu cỡ 25% công suất đèn. Vì vậy tổn thất nhiệt trong trường hợp này : Q22 = 1,25.Nhq , kW (3-11) Nhq : Tổng công suất đèn huỳnh quang, kW Q2 = Q21 + Q22 , kW (3-12) Một vấn đề thường gặp trên thực tế là khi thiết kế không biết bố trí đèn cụ thể trong phòng sẽ như thế nào hoặc người thiết kế không có điều kiện khảo sát chi tiết toàn bộ công trình, hoặc không có kinh nghiệm về cách bố trí đèn của các đối tượng. Trong trường hợp này có thể chọn theo điều kiện đủ chiếu sáng cho ở bảng 3-2. Bảng 3.2 : Thông số kinh nghiệm cho phòng Khu vực Lưu lượng không khí Phân bố người Công suất chiếu L/s.m2 m2/người sáng, W/m2 - Nhà ở 5,9 10 12 - Motel 7,5 10 12 - Hotel + Phòng ngủ 5,9 20 12 + Hành lang 10,6 3 24 - Triển lãm nghệ thuật - Bảo tàng 10 5 12 - Ngân hàng - Thư viện 11 3 12 - Nhà hát + Phòng Audio 12,1 0,8 10 + Quán bar 12,9 0,8 10 + Khu vực trợ giúp 6,4 4 18 - Nhà hàng 17,3 1,5 12 - Rạp chiếu bóng 12,1 0,8 10 - Siêu thị 8,3 4 36 - Cửa hàng nhỏ + Hiệu uốn tóc 12,0 4 24 + Bán dày, mũ 9,8 3 24 - Phòng thể thao nhẹ 13,4 1 12 - Phòng hội nghị 12,2 3 24 Như vậy tổn thất do nguồn sáng nhân tạo , trong trường hợp này được tính theo công thức Q2 = qs.F, W (3-13) trong đó F - diện tích sàn nhà, m2 2 2 qs - Công suất chiếu sáng yêu cầu cho 1m diện tích sàn, W/m 3.2.3 Nhiệt do người tỏa ra Q3 Nhiệt do người tỏa ra gồm 2 thành phần : - Nhiệt hiện : Do truyền nhiệt từ người ra môi trường thông qua đối lưu, bức xạ và dẫn nhiệt : qh - Nhiệt ẩn : Do tỏa ẩm (mồ hôi và hơi nước mang theo) : qW - Nhiệt toàn phần : Nhiệt toàn phần bằng tổng nhiệt hiện và nhiệt ẩn : q = qh + qW (3-14) 24
  23. Đối với một người lớn trưởng thành và khoẻ mạnh, nhiệt hiện, nhiệt ẩn và nhiệt toàn phần phụ thuộc vào cường độ vận động và nhiệt độ môi trường không khí xung quanh. Tổn thất do người tỏa được xác định theo công thức : - Nhiệt hiện : -3 Q3h = n.qh . .10 , kW - Nhiệt ẩn: -3 Q3w = n.qw . .10 , kW - Nhiệt toàn phần: -3 Q3 = n.q.10 , kW (3-15) n - Tổng số người trong phòng qh, qw, q - Nhiệt ẩn, nhiệt hiện và nhiệt toàn phần do một người tỏa ra trong một đơn vị thời gian và được xác định theo bảng 3.4. Khi tính nhiệt thừa do người toả ra người thiết kế thường gặp khó khăn khi xác định số lượng người trong một phòng. Thực tế, số lượng người luôn luôn thay đổi và hầu như không theo một quy luật nhất định nào cả. Trong trường hợp đó có thể lấy theo số liệu phân bố người nêu trong bảng 3-2. Bảng 3.4 dưới đây là nhiệt toàn phần và nhiệt ẩn do người toả ra. Theo bảng này nhiệt ẩn và nhiệt hiện do người toả ra phụ thuộc cường độ vận động của con người và nhiệt độ trong phòng. Khi nhiệt độ phòng tăng thì nhiệt ẩn tăng, nhiệt hiện giảm. Nhiệt toàn phần chỉ phụ thuộc vào cường độ vận động mà không phụ thuộc vào nhiệt độ của phòng. Cột 4 trong bảng là lượng nhiệt thừa phát ra từ cơ thể một người đàn ông trung niên có khối lượng cơ thể chừng 68kg. Tuy nhiên trên thực tế trong không gian điều hoà thường có mặt nhiều người với giới tính và tuổi tác khác nhau. Cột 4 là giá trị nhiệt thừa trung bình trên cơ sở lưu ý tới tỉ lệ đàn ông và đàn bà thường có ở những không gian khảo sát nêu trong bảng. Nếu muốn tính cụ thể theo thực tế thì tính nhiệt do người đà bà toả ra chiếm 85% , trẻ em chiếm 75% lượng nhiệt thừa của người đàn ông. Trong trường hợp không gian khảo sát là nhà hàng thì nên cộng thêm lượng nhiệt thừa do thức ăn toả ra cho mỗi người là 20W , trong đó 10W là nhiệt hiện và 10W là nhiệt ẩn * Hệ số tác dụng không đồng thời Khi tính toán tổn thất nhiệt cho công trình lớn luôn luôn xảy ra hiện tượng không phải lúc nào trong tất cả các phòng cũng có mặt đầy đủ số lượng người theo thiết kế và tất cả các đèn đều được bật sáng. Để tránh việc chọn máy có công suất quá dư , cần nhân các tổn thất Q2 và Q3 với hệ số gọi là hệ số tác dụng không đồng thời ηđt. Về giá trị hệ số tác dụng không đồng thời đánh giá tỷ lệ người có mặt thường xuyên trong phòng trên tổng số người có thể có hoặc tỷ lệ công suất thực tế của các đèn đang sử dụng trên tổng công suất đèn được trang bị. Trên bảng trình bày giá trị của hệ số tác động không đồng thời cho một số trường hợp. Bảng 3.3 : Hệ số tác dụng không đồng thời Khu vực Hệ số ηđt Người Đèn - Công sở 0,75 ÷ 0,9 0,7 ÷ 0,85 - Nhà cao tầng, khách sạn 0,4 ÷ 0,6 0,3 ÷ 0,5 - Cửa hàng bách hoá 0,8 ÷ 0,9 0,9 ÷ 1,0 25
  24. Bảng 3.4 : Nhiệt ẩn và nhiệt hiện do người toả ra,W/người Mức độ hoạt động Loại không gian Nhiệt Nhiệt Nhiệt độ phòng, oC thừa từ thừa 28 27 26 24 22 20 đàn ông trung qh qW qh qW qh qW qh qW qh qW qh qW trung bình niên Ngồi yên tĩnh Nhà hát 115 100 50 50 55 45 60 40 67 33 72 28 79 21 Ngồi, hoạt động nhẹ Trường học 130 120 50 70 55 65 60 60 70 50 78 42 84 36 Hoạt động văn phòng K.sạn, V.Phòng 140 130 50 80 56 74 60 70 70 60 78 52 86 44 Đi, đứng chậm rãi Cửa hàng 160 130 50 80 56 74 60 70 70 60 78 52 86 44 Ngồi, đi chậm Sân bay, hiệu 160 150 53 97 58 92 64 86 76 74 84 66 90 60 Đi, đứng chậm rãi thuốc 160 150 53 97 58 92 64 86 76 74 84 66 90 60 Các hoạt động nhẹ Ngân hàng 150 160 55 105 60 100 68 92 80 80 90 70 98 62 Các lao động nhẹ Nhà hàng 230 220 55 165 62 158 70 150 85 135 100 120 115 105 Khiêu vũ Xưởng sản xuất 260 250 62 188 70 180 78 172 94 156 110 140 125 125 Đi bộ 1,5 m/s Vũ trường 300 300 80 220 88 212 96 204 110 190 130 170 145 155 Lao động nặng Xưởng 440 430 132 298 138 292 144 286 154 276 170 260 188 242 Xưởng sản xuất 26
  25. 3.2.4 Nhiệt do sản phẩm mang vào Q4 Tổn thất nhiệt dạng này chỉ có trong các xí nghiệp, nhà máy, ở đó, trong không gian điều hoà thường xuyên và liên tục có đưa vào và đưa ra các sản phẩm có nhiệt độ cao hơn nhiệt độ trong phòng. Nhiệt toàn phần do sản phẩm mang vào phòng được xác định theo công thức Q4 = G4.Cp (t1 - t2) + W4.r , kW (3-16) trong đó : - Nhiệt hiện : Q4h = G4.Cp (t1 - t2), kW - Nhiệt ẩn : Q4w = W4.ro , kW G4 - Lưu lượng sản phẩm vào ra, kg/s o Cp - Nhiệt dung riêng khối lượng của sản phẩm, kJ/kg. C W4 - Lượng ẩm tỏa ra (nếu có) trong một đơn vị thời gian, kg/s ro - Nhiệt ẩn hóa hơi của nước ro = 2500 kJ/kg 3.2.5 Nhiệt tỏa ra từ bề mặt thiết bị nhiệt Q5 Nếu trong không gian điều hòa có thiết bị trao đổi nhiệt, chẳng hạn như lò sưởi, thiết bị sấy, ống dẫn hơi . . vv thì có thêm tổn thất do tỏa nhiệt từ bề mặt nóng vào phòng. Tuy nhiên trên thực tế ít xãy ra vì khi điều hòa thì các thiết bị này thường phải ngừng hoạt động. Nhiệt tỏa ra từ bề mặt trao đổi nhiệt thường được tính theo công thức truyền nhiệt và đó chỉ là nhiệt hiện. Tùy thuộc vào giá trị đo đạc được mà người ta tính theo công thức truyền nhiệt hay toả nhiệt. - Khi biết nhiệt độ bề mặt thiết bị nhiệt tw: Q5 = αW.FW.(tW-tT) (3-17) Trong đó αW là hệ số tỏa nhiệt từ bề mặt nóng vào không khí trong phòng và được tính theo công thức sau : 1/4 4 4 αW = 2,5.∆t + 58.ε .[(TW/100) - (TT/100) ] / ∆t (3-18) 2 o Khi tính gần đúng có thể coi αW = 10 W/m . C ∆t = tW - tT tW, tT - là nhiệt độ vách và nhiệt độ không khí trong phòng. - Khi biết nhiệt độ chất lỏng chuyển động bên trong ống dẫn tF: Q5 = k.F.(tF-tT) (3-19) trong đó hệ số truyền nhiệt k = 2,5 W/m2.oC 3.2.6 Nhiệt do bức xạ mặt trời vào phòng Q6 3.2.6.1 Nhiệt bức xạ mặt trời Có thể coi mặt trời là một quả cầu lửa khổng lồ với đường kính trung bình 1,39.106km và cách xa quả đất 150.106 km. Nhiệt độ bề mặt của mặt trời khoảng 6000OK trong khi ở tâm đạt đến 8÷40.106 oK Tuỳ thuộc vào thời điểm trong năm mà khoảng cách từ mặt trời đến trái đất thay đổi, mức thay đổi xê dịch trong khoảng +1,7% so với khoảng cách trung bình nói trên. Do ảnh hưởng của bầu khí quyển lượng bức xạ mặt trời giảm đi khá nhiều. Có nhiều yếu tố ảnh hưởng tới bức xạ mặt trời như mức độ nhiễm bụi, mây mù, thời điểm trong ngày và trong năm , địa điểm nơi lắp đặt công trình, độ cao của công trình so với mặt nước biển, nhiệt độ đọng sương của không khí xung quanh và hướng của bề mặt nhận bức xạ. Nhiệt bức xạ được chia ra làm 3 thành phần - Thành phần trực xạ - nhận nhiệt trực tiếp từ mặt trời 27
  26. - Thành phần tán xạ - Nhiệt bức xạ chiếu lên các đối tượng xung quanh làm nóng chúng và các vật đó bức xạ gián tiếp lên kết cấu - Thành phần phản chiếu từ mặt đất. 3.2.6.2 Xác định nhiệt bức xạ mặt trời . Nhiệt bức xạ xâm nhập vào phòng phụ thuộc kết cấu bao che và được chia ra làm 2 dạng : - Nhiệt bức xạ qua cửa kính Q61 - Nhiệt bức xạ qua kết cấu bao che tường và mái : Q62 Q6 = Q61 + Q62 (3-20) a. Nhiệt bức xạ qua kính * Trường hợp sử dụng kính cơ bản : Kính cơ bản là loại kính trong suốt, dày 3mm, có hệ số hấp thụ αm=6%, hệ số phản o xạ ρm = 8% (ứng với góc tới của tia bức xạ là 30 ) Nhiệt bức xạ mặt trời qua kính được tính theo công thức : Q61 = Fk.R.εc.εds.εmmεkh.εK.εm, W (3-21) trong đó : 2 + Fk - Diện tích bề mặt kính, m . Nếu khung gổ Fk = 0,85 F’ (F’ Diện tích phần kính và khung), khung sắt Fk = F’ + R- Nhiệt bức xạ mặt trời qua cửa kính cơ bản vào phòng . Giá trị R cho ở bảng 3-7 + εc - Hệ số tính đến độ cao H (m) nơi đặt cửa kính so với mực nước biển: H ε =1+ 0,023 (3 -22) c 1000 o + εds - Hệ số xét tới ảnh hưởng của độ chênh lệch nhiệt độ đọng sương so với 20 C + εmm - Hệ số xét tới ảnh hưởng của mây mù . Trời không mây lấy εmm = 1, trời có mây t − 20 ε =1 − 0,13. s (3-23) ds 10 εmm=0,85 + εkh - Hệ số xét tới ảnh hưởng của khung kính. Kết cấu khung khác nhau thì mức độ che khuất một phần kính dưới các tia bức xạ khác nhau. Với khung gỗ εkh = 1, khung kim loại εkh = 1,17 + εK - Hệ số kính, phụ thuộc màu sắc và loại kính khác kính cơ bản và lấy theo bảng 3-5 Bảng 3-5 : Đặc tính bức xạ của các loại kính Loại kính Hệ số Hệ số Hệ số Hệ số hấp thụ phản xạ xuyên kính εK αk ρk qua τk Kính cơ bản 0,06 0,08 0,86 1,00 Kính trong dày 6mm, phẳng 0,15 0,08 0,77 0,94 Kính spectrafloat, màu đồng nâu, dày 6mm 0,34 0,10 0,56 0,80 Kính chống nắng, màu xám, 6mm 0,51 0,05 0,44 0,73 Kính chống nắng, màu đồng nâu, 12mm 0,74 0,05 0,21 0,58 Kính Calorex, màu xanh , 6mm 0,75 0,05 0,20 0,57 Kính Stopray, màu vàng, 6mm 0,36 0,39 0,25 0,44 Kính trong tráng màng phản xạ RS20, 6mm 0,44 0,44 0,12 0,34 Kính trong tráng màng phản xạ A18, 4mm 0,30 0,53 0,17 0,33 + εm - Hệ số mặt trời . Hệ số này xét tới ảnh hưởng của màn che tới bức xạ mặt trời. Khi không có màn che εm = 1. Khi có màn εm được chọn theo bảng 3-6 28
  27. Bảng 3-6 : Đặc tính bức xạ của màn che Loại màn che, rèm che Hệ số hấp Hệ số phản Hệ số Hệ số mặt thụ αm xạ ρm xuyên qua trời εm τm - Cửa chớp màu nhạt 0,37 0,51 0,12 0,56 màu trung bình 0,58 0,39 0,03 0,65 màu đậm 0,72 0,27 0,01 0,75 - Màn che loại metalon 0,29 0,48 0,23 0,58 - Màn che Brella kiểu Hà Lan 0,09 0,77 0,14 0,33 Bảng 3-7: Dòng nhiệt bức xạ mặt trời xâm nhập vào phòng R, W/m2 Vĩ độ 10O Bắc Giờ mặt trời Tháng Hướng 6 7 8 9 10 11 12 13 14 15 16 17 Bắc 60 139 158 142 139 136 129 136 139 142 158 139 Đông Bắc 173 413 483 442 334 205 88 44 44 41 35 25 Đông 170 423 489 438 309 129 44 44 44 41 35 25 Đông Nam 57 155 173 146 79 44 44 44 44 41 35 25 6 Nam 6 25 35 41 44 44 44 44 44 41 35 25 Tây Nam 6 25 25 41 44 44 44 44 79 136 173 155 Tây 6 25 25 41 44 44 44 129 309 438 489 423 Tây Bắc 6 25 25 41 44 57 88 205 334 442 483 413 Mặt nằm 13 139 337 524 647 735 766 735 647 524 337 139 ngang Bắc 16 107 123 110 104 98 95 98 104 110 123 107 Đông Bắc 132 401 467 419 344 177 69 44 44 41 35 22 Đông 158 426 498 448 309 136 44 44 44 41 35 22 Đông Nam 82 180 208 177 101 44 44 44 44 41 35 22 5 và 7 Nam 3 22 35 41 44 44 44 44 44 41 35 22 Tây Nam 3 22 35 41 44 44 44 44 101 177 208 180 Tây 3 22 35 41 44 44 44 136 309 448 498 426 Tây Bắc 3 22 35 41 44 44 69 177 344 419 467 401 Mặt nằm 9 132 337 524 662 744 779 744 662 524 337 132 ngang Bắc 3 47 50 47 47 44 44 44 47 47 50 47 Đông Bắc 54 356 410 350 252 107 44 44 44 41 35 22 Đông 79 435 514 470 328 145 44 44 44 41 35 22 Đông Nam 57 249 296 268 189 85 44 44 44 41 35 22 4 và 8 Nam 3 22 35 41 44 44 44 44 44 41 35 22 Tây Nam 3 22 35 41 44 44 44 85 189 268 296 249 Tây 3 22 35 41 44 44 44 145 252 470 514 435 Tây Bắc 3 22 35 41 44 44 44 107 237 350 410 356 Mặt nằm 6 120 331 527 672 763 789 763 672 527 331 120 ngang Bắc 3 19 35 41 44 44 44 44 44 41 35 19 Đông Bắc 3 281 325 252 142 54 44 44 44 41 35 19 Đông 3 410 517 476 334 148 44 44 44 41 35 19 Đông Nam 3 306 401 385 296 177 66 44 44 41 35 19 3 và 9 Nam 3 19 41 60 76 85 88 85 76 60 41 19 Tây Nam 3 19 35 41 44 44 66 177 196 385 401 306 Tây 3 19 35 41 44 44 44 148 334 476 517 410 Tây Bắc 3 19 35 41 44 44 44 54 142 252 325 281 Mặt nằm 3 98 306 505 653 741 779 741 653 505 306 98 ngang 29
  28. Bắc 0 16 32 41 44 44 44 44 44 41 32 16 Đông Bắc 0 183 208 139 88 44 44 44 44 41 32 16 2 và Đông 0 372 489 457 315 126 44 44 44 41 32 16 10 Đông Nam 0 325 464 470 388 255 145 57 44 41 32 16 Nam 0 57 126 173 205 224 230 224 205 173 126 57 Tây Nam 0 16 32 41 44 57 145 255 388 470 464 325 Tây 0 16 32 41 44 44 44 126 315 457 489 372 Tây Bắc 0 16 32 41 44 44 44 44 88 139 208 183 Mặt nằm 0 69 268 438 609 694 735 694 609 438 268 69 ngang Bắc 0 13 28 38 41 44 44 44 41 38 28 13 Đông Bắc 0 85 117 54 41 44 44 44 41 38 28 13 1 và Đông 0 312 451 416 293 123 44 44 41 38 28 13 11 Đông Nam 0 312 483 508 460 344 221 98 54 38 28 13 Nam 0 110 205 287 303 328 334 328 303 287 205 110 Tây Nam 0 13 28 38 54 98 221 344 460 508 483 312 Tây 0 13 28 38 41 44 44 123 293 416 451 312 Tây Bắc 0 13 28 38 41 44 44 44 41 54 117 85 Mặt nằm 0 54 196 413 552 637 662 637 552 413 196 54 ngang Bắc 0 13 28 38 41 44 44 44 41 38 28 13 Đông Bắc 0 47 88 54 41 44 44 44 41 38 28 13 12 Đông 0 271 432 410 287 132 44 44 41 38 28 13 Đông Nam 0 312 486 514 470 382 249 114 73 38 28 13 Nam 0 158 233 296 344 366 378 366 344 296 233 158 Tây Nam 0 13 28 38 73 144 249 382 470 514 486 312 Tây 0 13 28 38 41 44 44 132 287 410 432 271 Tây Bắc 0 13 28 38 41 44 44 44 41 54 88 47 Mặt nằm 0 44 208 378 527 609 637 609 527 378 208 44 ngang Vĩ độ 20O Bắc Giờ mặt trời Tháng Hướng 6 7 8 9 10 11 12 13 14 15 16 17 Bắc 88 129 104 79 60 54 47 54 60 79 104 129 Đông Bắc 255 454 385 262 120 47 44 44 44 38 28 9 Đông 255 467 505 451 303 129 44 44 44 44 38 28 Đông Nam 88 196 230 208 139 66 44 44 44 44 38 28 6 Nam 9 28 38 44 44 44 44 44 44 44 38 28 Tây Nam 9 28 38 44 44 44 44 66 139 208 230 196 Tây 9 28 38 44 44 44 44 129 302 451 505 467 6 Tây Bắc 9 28 38 44 44 44 47 120 262 385 454 486 Mặt nằm 35 189 382 555 681 732 789 732 681 555 382 189 ngang Bắc 63 88 73 54 47 44 44 44 47 54 73 88 Đông Bắc 224 416 435 350 230 98 44 44 44 41 38 25 Đông 237 467 514 457 312 145 44 44 44 41 38 25 Đông Nam 98 221 268 249 180 91 44 44 44 41 38 25 5 và 7 Nam 9 25 38 44 44 44 44 44 44 41 38 25 Tây Nam 9 25 38 44 44 44 44 91 180 249 268 221 Tây 9 25 38 41 44 44 44 145 312 457 514 467 Tây Bắc 9 25 38 41 44 44 44 98 230 350 435 416 Mặt nằm 25 173 372 552 681 757 792 757 681 552 372 173 ngang 30
  29. Bắc 19 32 35 41 44 44 44 44 44 41 35 32 Đông Bắc 142 350 372 281 158 57 44 44 44 41 35 22 Đông 167 448 520 470 334 161 44 44 44 41 35 22 Đông Nam 91 281 356 341 309 173 63 44 44 41 35 22 4 và 8 Nam 6 22 35 44 63 76 82 76 63 44 35 22 Tây Nam 6 22 35 41 44 44 63 173 309 341 356 281 Tây 6 22 35 41 44 44 44 161 334 470 520 148 Tây Bắc 6 22 35 41 445 44 44 57 158 281 372 350 Mặt nằm 16 151 337 527 662 741 779 741 662 527 337 151 ngang Bắc 0 19 35 41 44 44 44 44 44 41 35 19 Đông Bắc 0 262 274 186 69 44 44 44 44 41 35 19 Đông 0 410 514 470 328 142 44 44 44 41 35 19 Đông Nam 0 312 429 442 378 265 129 47 44 44 35 19 3 và 9 Nam 0 25 69 120 164 199 205 199 164 120 69 25 Tây Nam 0 19 35 41 44 47 129 265 378 442 429 312 Tây 0 19 35 41 44 44 44 142 328 470 514 410 Tây Bắc 0 19 35 41 44 44 44 44 69 186 247 262 Mặt nằm 0 95 293 483 624 710 735 710 624 483 293 95 ngang Bắc 0 13 28 38 41 44 44 44 41 38 28 13 Đông Bắc 0 139 164 91 41 44 44 44 41 38 28 13 2 và Đông 0 464 445 315 155 44 44 41 38 28 13 10 Đông Nam 0 287 460 505 470 375 233 85 41 38 28 13 Nam 0 66 158 240 293 335 350 334 293 240 158 66 Tây Nam 0 13 28 38 41 85 233 375 470 505 460 287 Tây 0 13 28 38 41 44 44 155 315 445 464 312 Tây Bắc 0 13 28 38 41 44 44 44 41 91 164 139 Mặt nằm 0 57 214 401 539 618 656 618 539 401 214 57 ngang Bắc 0 9 25 35 41 41 41 41 41 35 25 9 Đông Bắc 0 76 82 44 41 41 41 41 41 35 25 9 1 và Đông 0 224 404 401 287 136 41 41 41 35 25 9 11 Đông Nam 0 230 450 517 498 426 287 145 50 35 25 9 Nam 0 88 218 315 388 429 445 429 388 315 218 88 Tây Nam 0 9 25 35 50 145 287 426 498 517 454 230 Tây 0 9 25 35 38 41 41 136 287 401 404 224 1 và Tây Bắc 0 9 25 35 38 41 41 41 41 41 82 76 11 Mặt nằm 0 16 151 319 460 542 568 542 460 319 151 16 ngang Bắc 0 6 22 35 38 41 41 41 38 35 22 6 Đông Bắc 0 44 57 38 38 41 41 41 38 35 22 6 12 Đông 0 177 372 382 268 107 41 41 38 35 22 6 Đông Nam 0 186 438 527 501 423 306 189 63 35 22 6 Nam 0 79 233 350 416 460 470 460 416 350 233 79 Tây Nam 0 6 22 35 63 198 306 423 501 527 438 186 Tây 0 6 22 35 38 41 41 107 268 382 372 177 Tây Bắc 0 6 22 35 38 41 41 41 38 38 57 44 Mặt nằm 0 13 114 290 246 508 536 508 426 290 114 13 ngang Vĩ độ 30O Bắc Giờ mặt trời Tháng Hướng 6 7 8 9 10 11 12 13 14 15 16 17 31
  30. Bắc 104 91 57 44 44 44 44 44 44 44 57 91 Đông Bắc 331 410 306 173 60 44 44 44 44 38 32 16 Đông 341 492 508 451 309 139 44 44 44 44 38 32 Đông Nam 132 237 284 284 230 139 54 44 44 44 38 32 6 Nam 16 32 38 44 47 60 66 60 47 44 38 32 Tây Nam 16 32 28 44 44 44 54 139 230 284 284 237 Tây 16 32 38 44 44 44 44 139 309 451 508 492 Tây Bắc 16 32 38 44 44 44 44 60 173 306 410 438 Mặt nằm 60 192 413 568 684 757 789 757 684 568 413 192 ngang Bắc 69 63 44 44 44 44 44 44 44 44 44 63 Đông Bắc 293 413 388 281 145 50 44 44 44 41 38 28 Đông 315 489 517 457 312 139 44 44 44 41 38 28 Đông Nam 132 259 315 315 262 167 69 44 44 41 38 28 5 và 7 Nam 13 28 38 44 63 85 95 85 63 44 38 28 Tây Nam 13 28 38 41 44 44 44 167 262 315 315 258 Tây 13 28 38 41 44 44 44 139 312 457 517 489 Tây Bắc 13 28 38 41 44 44 44 50 145 281 388 413 Mặt nằm 47 208 388 555 675 744 776 744 675 555 388 208 ngang Bắc 19 25 35 41 41 44 44 44 41 41 35 25 Đông Bắc 173 341 315 208 85 44 44 44 41 41 35 25 Đông 208 464 520 467 322 145 44 44 41 413 35 25 Đông Nam 117 309 401 407 353 259 123 47 41 41 35 25 4 và 8 Nam 6 25 41 85 148 183 198 183 148 85 41 25 Tây Nam 6 25 35 41 41 47 123 259 353 407 401 309 Tây 6 25 35 41 41 44 44 145 322 467 520 464 Tây Bắc 6 25 35 41 41 44 44 44 85 208 315 341 Mặt nằm 19 148 337 508 631 710 741 710 631 508 337 148 ngang Bắc 0 16 32 38 41 44 44 44 41 38 32 16 Đông Bắc 0 233 284 126 47 44 44 44 41 38 32 16 3 và 9 Đông 0 391 498 454 325 151 44 44 41 38 32 16 Đông Nam 0 309 413 479 445 356 211 79 41 38 32 16 Nam 0 28 57 189 259 309 331 309 259 189 57 28 3 và 9 Tây Nam 0 16 32 38 41 79 211 356 445 479 413 309 Tây 0 16 32 38 41 44 44 151 325 454 498 391 Tây Bắc 0 16 32 38 41 44 44 44 47 126 284 233 Mặt nằm 0 79 255 426 565 637 669 637 565 426 255 79 ngang Bắc 0 9 25 35 38 41 44 41 38 35 25 9 Đông Bắc 0 140 123 57 38 41 44 41 38 35 25 9 Đông 0 249 426 416 296 136 44 41 38 35 25 9 Đông Nam 0 230 448 514 501 429 290 148 47 35 25 9 2 và Nam 0 57 180 290 382 438 457 438 382 290 180 57 10 Tây Nam 0 9 25 35 47 148 290 429 501 514 448 230 Tây 0 9 25 35 38 41 44 136 296 416 426 294 Tây Bắc 0 9 25 35 38 41 44 41 38 57 123 104 Mặt nằm 0 19 155 315 451 539 565 538 451 315 155 19 ngang Bắc 0 3 19 28 35 38 38 38 35 28 19 3 Đông Bắc 0 25 50 28 35 38 38 38 35 28 19 3 Đông 0 85 344 366 262 110 38 38 35 28 19 3 Đông Nam 0 88 401 508 511 451 328 202 73 28 19 3 1 và Nam 0 32 214 344 432 486 501 486 432 344 214 32 11 Tây Nam 0 3 19 28 73 202 328 451 511 508 401 88 32
  31. Tây 0 3 19 28 35 38 38 110 262 366 344 85 Tây Bắc 0 3 19 28 35 38 38 38 35 28 50 25 Mặt nằm 0 6 85 224 344 429 457 429 344 224 85 6 ngang Bắc 0 0 13 28 35 38 38 38 35 28 13 0 Đông Bắc 0 0 32 28 35 38 38 38 35 28 13 0 Đông 0 0 290 331 252 101 38 38 35 28 13 0 Đông Nam 0 0 360 495 511 451 341 227 88 28 13 0 12 Nam 0 0 202 356 448 501 514 501 448 356 202 0 Tây Nam 0 0 13 28 88 227 341 451 511 495 360 0 Tây 0 0 13 28 35 38 38 101 252 331 290 0 Tây Bắc 0 0 13 28 35 38 38 38 35 28 32 0 Mặt nằm 0 0 60 189 306 385 413 385 306 189 60 0 ngang Công thức (3-21) trên đây chỉ tính cho các trường hợp sau : - Kính là kính cơ bản (εK = 1) có hoặc không có rèm che - Không phải kính cơ bản (εk ≠ 1) và không có rèm che (εm = 1). Trường hợp kính không phải kính cơ bản (εK ≠ 1) và có rèm che (εm ≠ 1) người ta tính theo công thức dưới đây. * Trường hợp không phải kính cơ bản và có rèm che : Q61 = Fk.Rxn.εc.εds.εmmεkh.εK , W (3-24) trong đó 2 Fk - Diện tích cửa kính , m Rxn - Lượng nhiệt bức xạ xâm nhập vào không gian điều hoà [0,4.α k + τ k .(α m + τ m + ρ k .ρ m + 0,4.α k .ρ m )] (3-25) Rxn = .R 0,88 Trị số R lấy theo bảng 3-7, các giá trị αK, τK, ρK lấy theo bảng (3-5), αm, τm, ρm lấy theo bảng (3-6). Các hệ số khác vẫn tính giống như các hệ số ở công thức (3-21) * Bức xạ mặt trời qua kính thực tế Nhiệt bức xạ mặt trời khi bức xạ qua kính chỉ có một phần tác động tức thời tới không khí trong phòng, phần còn lại tác động lên kết cấu bao che và bị hấp thụ một phần, chỉ sau một khoảng thời gian nhất định mới tác động tới không khí Vì vậy thành phần nhiệt thừa do các tia bức xạ xâm nhập qua cửa kính gây tác động tức thời đến phụ tải hệ thống điều hoà không khí R’xn = Rmax.k.nt (3-26) trong đó R’xn - Lượng bức xạ mặt trời xâm nhập qua cửa kính gây tác động tức thời đến phụ tải của hệ thống điều hoà không khí, W/m2 2 Rmax - Lượng bức xạ mặt trời lớn nhất xâm nhập qua cửa kính, W/m (Tham khảo bảng 3-8a) nt - Hệ số tác dụng tức thời (Tham khảo bảng 3-8b, và 3-8c) k - Tích số các hệ số xét tới ảnh hưởng của các yếu tố như sương mù, độ cao, nhiệt động động sương, loại khung cửa và màn che. Hệ số tác động tức thời cho trong các bảng 3-8b và 3-8c. Cần lưu ý rằng để xác định hệ số tác dụng tức thời phải căn cứ vào khối lượng tính cho 1m2 diện tích. Thật vậy khi khối lượng riêng của vật càng lớn, khả năng hấp thụ các tia bức xạ càng lớn, do đó mức độ chậm trễ giữa điểm cực đại của nhiệt bức xạ và phụ tải lạnh càng lớn. 2 Bảng 3-8a : Lượng nhiệt lớn nhất xâm nhập qua cửa kính loại cơ bản Rmax, W/m 33
  32. Vĩ độ Tháng Hướng (Bắc) Bắc Đông Đông Đông Nam Tây Tây Tây Mặt Bắc Nam Nam Bắc Ngan g 6 492 464 132 44 132 464 492 713 7 và 5 141 483 479 164 44 164 479 483 735 8 và 4 79 445 514 294 44 294 514 445 773 0 9 và 3 32 372 527 372 44 372 527 372 789 10 và 2 32 249 514 445 107 445 514 249 773 11 và 1 32 164 479 483 211 483 479 164 735 12 32 132 464 492 259 492 464 132 713 6 126 483 489 173 44 173 489 483 766 7 và 5 95 467 498 208 44 208 498 467 779 8 và 4 41 410 514 296 44 296 514 410 789 10 9 và 3 32 325 517 401 88 401 517 325 779 10 và 2 32 208 489 470 230 470 489 208 725 11 và 1 28 117 451 508 334 508 451 117 662 12 28 88 432 514 378 514 432 88 637 6 82 486 505 230 44 230 505 486 789 7 và 5 60 435 514 268 44 268 514 435 792 20 8 và 4 35 372 520 356 82 356 520 372 779 9 và 3 32 274 514 442 205 442 514 274 735 10 và 2 28 164 464 505 350 505 464 164 656 11 và 1 25 82 404 517 445 517 404 82 568 12 25 57 382 527 470 527 382 57 536 6 63 438 508 284 66 284 508 438 789 7 và 5 50 413 517 315 95 315 517 413 776 8 và 4 35 341 520 407 199 407 520 341 741 30 9 và 3 28 284 498 479 331 479 498 284 669 10 và 2 25 123 426 514 457 514 426 123 565 11 và 1 22 50 366 511 501 511 366 50 457 12 19 38 331 511 514 511 331 38 413 34
  33. Bảng 3-8b : Hệ số tác dụng tức thời nt của lượng bức xạ mặt trời xâm nhập qua cửa kính có màn che bên trong (Hoạt động 24giờ/24, nhiệt độ không khí không đổi) Hướng Khối Sáng Chiều, Tối Sáng lượng 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 kg/m2 > 700 0,0 0,06 0,23 0,38 0,5 0,60 0,66 0,67 0,64 0,59 0,42 0,24 0,22 0,1 0,17 0,15 0,13 0,12 0,10 0,09 0,08 0,07 0,07 Nam 500 6 0,04 0,22 0,38 1 0,63 0,70 0,71 0,69 0,59 0,45 0,26 0,22 9 0,16 0,13 0,12 0,10 0,09 0,08 0,07 0,06 0,06 0,05 150 0,0 0,21 0,43 0,63 0,5 0,86 0,88 0,82 0,56 0,50 0,24 0,16 0,11 0,1 0,05 0,04 0,02 0,02 0,01 0,01 0 0 0 0 4 2 8 0,1 0,7 0,0 0 7 8 > 700 0,0 0,28 0,47 0,59 0,6 0,62 0,53 0,41 0,27 0,24 0,21 0,19 0,16 0,1 0,12 0,11 0,10 0,09 0,08 0,07 0,06 0,06 0,05 0,05 Đông 500 4 0,28 0,47 0,61 4 0,65 0,57 0,44 0,29 0,24 0,21 0,18 0,15 4 0,10 0,09 0,08 0,07 0,06 0,05 0,05 0,04 0,04 0,03 Nam 150 0,0 0,30 0,57 0,75 0,6 0,81 0,69 0,50 0,30 0,20 0,17 0,13 0,09 0,1 0,04 0,03 0,02 0,01 0 0 0 0 0 0 3 7 2 0 0,8 0,0 4 5 > 700 0,3 0,56 0,62 0,59 0,4 0,33 0,23 0,21 0,20 0,18 0,17 0,15 0,12 0,1 0,09 0,08 0,08 0,07 0,06 0,05 0,05 0,05 0,04 0,04 Đông 500 9 0,58 0,65 0,63 9 0,35 0,24 0,22 0,20 0,18 0,16 0,14 0,12 0 0,08 0,07 0,06 0,05 0,05 0,04 0,04 0,03 0,03 0,02 150 0,4 0,70 0,80 0,79 0,5 0,42 0,25 0,19 0,16 0,14 0,11 0,09 0,07 0,0 0,02 0,02 0,01 0,01 0 0 0 0 0 0 0 2 9 0,4 0,6 0,0 6 4 4 > 700 0,4 0,58 0,54 0,42 0,2 0,21 0,20 0,19 0,18 0,17 0,16 0,14 0,12 0,0 0,08 0,07 0,06 0,06 0,05 0,05 0,04 0,04 0,04 0,03 Đông 500 7 0,60 0,57 0,46 7 0,24 0,20 0,19 0,17 0,16 0,15 0,13 0,11 9 0,07 0,06 0,05 0,05 0,04 0,04 0,03 0,03 0,02 0,02 Bắc 150 0,4 0,76 0,73 0,58 0,3 0,24 0,19 0,17 0,15 0,13 0,12 0,11 0,07 0,0 0,02 0,02 0,01 0,01 0 0 0 0 0 0 8 0 8 0,5 0,3 0,0 5 6 4 > 700 0,0 0,09 0,10 0,10 0,1 0,10 0,10 0,10 0,16 0,33 0,49 0,61 0,60 0,1 0,17 0,15 0,13 0,12 0,10 0,09 0,08 0,08 0,07 0,06 Tây 500 8 0,08 0,09 0,09 0 0,10 0,10 0,10 0,15 0,34 0,52 0,65 0,64 9 0,18 0,15 0,12 0,11 0,09 0,08 0,07 0,06 0,06 0,05 Bắc 150 0,0 0,05 0,07 0,08 0,1 0,09 0,10 0,10 0,17 0,39 0,63 0,80 0,79 0,2 0,18 0,12 0,09 0,06 0,04 0,03 0,02 0,02 0,01 0 7 0 3 0,0 0,0 0,2 3 9 8 > 700 0,0 0,09 0,09 0,10 0,1 0,10 0,10 0,18 0,36 0,52 0,63 0,65 0,55 0,2 0,19 0,17 0,15 0,14 0,12 0,11 0,10 0,09 0,08 0,07 Tây 500 8 0,08 0,08 0,09 0 0,09 0,09 0,18 0,36 0,54 0,66 0,68 0,60 2 0,20 0,17 0,15 0,13 0,11 0,10 0,08 0,07 0,06 0,05 150 0,0 0,04 0,06 0,07 0,0 0,08 0,08 0,19 0,42 0,65 0,81 0,85 0,74 0,2 0,19 0,13 0,09 0,06 0,05 0,03 0,02 0,02 0,01 0 7 9 5 35
  34. 0,0 0,0 0,3 3 8 0 Tây > 700 0,0 0,08 0,9 0,10 0,1 0,24 0,39 0,53 0,63 0,66 0,61 0,47 0,23 0,1 0,18 0,16 0,14 0,13 0,11 0,10 0,09 0,08 0,08 0,07 Nam 500 8 0,08 0,08 0,08 1 0,24 0,40 0,55 0,66 0,70 0,64 0,50 0,26 9 0,17 0,15 0,13 0,11 0,10 0,09 0,08 0,07 0,06 0,05 150 0,0 0,04 0,06 0,07 0,1 0,23 0,47 0,67 0,81 0,86 0,79 0,60 0,26 0,2 0,12 0,08 0,05 0,04 0,03 0,02 0,01 0,01 0 0 7 0 0 0,0 0,0 0,1 3 9 7 > 700 0,0 0,36 0,67 0,71 0,7 0,76 0,79 0,81 0,83 0,84 0,86 0,87 0,88 0,2 0,26 0,23 0,20 0,19 0,17 0,15 0,14 0,12 0,11 0,10 Bắc 500 8 0,31 0,67 0,72 4 0,79 0,81 0,83 0,85 0,87 0,88 0,90 0,91 9 0,26 0,22 0,19 0,16 0,15 0,13 0,12 0,10 0,09 0,08 150 0,0 0,25 0,74 0,83 0,7 0,91 0,94 0,96 0,96 0,98 0,98 0,99 0,99 0,3 0,17 0,12 0,08 0,05 0,04 0,03 0,02 0,01 0,01 0.01 6 6 0 0 0,8 0,2 8 6 Bảng 3-8c : Hệ số tác dụng tức thời nt của lượng bức xạ mặt trời xâm nhập qua cửa kính không có màn che hoặc trong râm (Hoạt động 24giờ/24, nhiệt độ không khí không đổi) Hướng Khối Sáng Chiều, Tối Sáng lượng 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 kg/m2 > 700 0,1 0,27 0,33 0,33 0,3 0,29 0,27 0,25 0,23 0,22 0,20 0,19 0,17 0,1 0,14 0,12 0,11 0,10 0,09 0,08 0,07 0,07 0,06 0,06 Nam 500 7 0,31 0,38 0,39 1 0,34 0,27 0,24 0,22 0,21 0,19 0,17 0,16 5 0,12 0,10 0,07 0,08 0,07 0,06 0,05 0,05 0,05 0,04 150 0,1 0,56 0,65 0,61 0,3 0,33 0,26 0,21 0,18 0,16 0,14 0,12 0,09 0,1 0,04 0,03 0,02 0,01 0,01 0,01 0 0 0 0 9 6 4 0,3 0,4 0,0 1 6 6 > 700 0,1 0,26 0,34 0,39 0,4 0,38 0,34 0,30 0,28 0,26 0,23 0,22 0,20 0,1 0,16 0,14 0,13 0,12 0,10 0,09 0,08 0,08 0,07 0,06 Đông 500 6 0,29 0,40 0,46 0 0,42 0,36 0,31 0,28 0,25 0,23 0,20 0,18 8 0,14 0,12 0,11 0,09 0,08 0,08 0,06 0,06 0,05 0,04 Nam 150 0,1 0,50 0,67 0,73 0,4 0,53 0,38 0,27 0,22 0,18 0,15 0,12 0,09 0,1 0,04 0,03 0,02 0,01 0,01 0,01 0,01 0 0 0,01 6 6 5 0,2 0,6 0,0 7 8 6 > 700 0,0 0,14 0,22 0,71 0,3 0,43 0,44 0,43 0,39 0,35 0,32 0,29 0,26 0,2 0,21 0,19 0,16 0,15 0,13 0,12 0,11 0,10 0,09 0,08 Đông 500 8 0,12 0,23 0,35 8 0,49 0,51 0,47 0,41 0,36 0,31 0,27 0,24 3 0,18 0,16 0,14 0,12 0,10 0,09 0,08 0,08 0,06 0,06 150 0,0 0,18 0,40 0,59 0,4 0,77 0,72 0,60 0,44 0,32 0,23 0,18 0,14 0,2 0,07 0,05 0,03 0,02 0,01 0,01 0,01 0 0 0 5 4 1 36
  35. 0 0,7 0,0 2 9 > 700 0,1 0,10 0,13 0,20 0,2 0,35 0,42 0,48 0,51 0,51 0,48 0,42 0,37 0,3 0,29 0,26 0,23 0,21 0,19 0,17 0,15 0,14 0,13 0,12 Đông 500 0 0,06 0,12 0,20 8 0,39 0,48 0,54 0,58 0,57 0,53 0,45 0,37 3 0,24 0,23 0,20 0,18 0,16 0,14 0,12 0,11 0,10 0,08 Bắc 150 0,0 0 0,12 0,29 0,3 0,64 0,75 0,82 0,81 0,75 0,61 0,42 0,28 0,3 0,13 0,09 0,06 0,04 0,03 0,02 0,01 0,01 0 0 7 0 1 0 0,4 0,1 8 9 > 700 0,1 0,10 0,10 0,10 0,1 0,14 0,21 0,29 0,36 0,43 0,47 0,46 0,40 0,3 0,30 0,27 0,24 0,22 0,20 0,18 0,16 0,14 0,13 0,12 Tây 500 1 0,09 0,08 0,09 0 0,14 0,22 0,31 0,42 0,50 0,53 0,51 0,44 4 0,29 0,26 0,22 0,19 0,17 0,15 0,13 0,12 0,11 0,09 Bắc 150 0,0 0,03 0,05 0,06 0,0 0,12 0,34 0,53 0,68 0,78 0,78 0,68 0,46 0,3 0,20 0,14 0,09 0,07 0,05 0,03 0,02 0,02 0,01 0,01 9 9 5 0,0 0,0 0,2 2 8 9 > 700 0,1 0,10 0,11 0,10 0,1 0,10 0,10 0,13 0,19 0,27 0,36 0,42 0,44 0,3 0,33 0,29 0,26 0,23 0,21 0,18 0,16 0,15 0,13 0,02 Tây 500 2 0,09 0,09 0,09 0 0,09 0,10 0,12 0,19 0,30 0,40 0,48 0,51 8 0,35 0,30 0,25 0,22 0,19 0,16 0,14 0,13 0,11 0,09 150 0,0 0,04 0,05 0,06 0,0 0,07 0,08 0,14 0,29 0,49 0,67 0,76 0,75 0,4 0,33 0,22 0,15 0,11 0,08 0,05 0,04 0,03 0,02 0,01 9 9 2 0,0 0,0 0,5 2 7 3 Tây > 700 0,1 0,10 0,10 0,10 0,1 0,10 0,10 0,10 0,12 0,17 0,25 0,34 0,39 0,3 0,29 0,26 0,23 0,20 0,18 0,16 0,14 0,13 0,12 0,10 Nam 500 0 0,09 0,09 0,09 0 0,09 0,09 0,09 0,11 0,19 0,29 0,40 0,46 4 0,32 0,26 0,22 0,19 0,16 0,14 0,13 0,11 0,10 0,08 150 0,0 0,04 0,05 0,07 0,0 0,09 0,10 0,10 0,13 0,27 0,48 0,65 0,73 0,4 0,31 0,21 0,16 0,10 0,07 0,05 0,04 0,03 0,02 0,01 8 9 0 0,0 0,0 0,4 2 8 9 > 700 0,1 0,23 0,33 0,41 0,4 0,52 0,57 0,61 0,66 0,69 0,72 0,74 0,59 0,5 0,46 0,42 0,37 0,34 0,31 0,27 0,25 0,23 0,21 0,17 Bắc 500 6 0,33 0,44 0,54 7 0,62 0,66 0,70 0,74 0,76 0,79 0,80 0,60 2 0,44 0,37 0,32 0,29 0,27 0,23 0,21 0,18 0,16 0,13 150 0,1 0,48 0,66 0,76 0,5 0,87 0,91 0,43 0,95 0,97 0,98 0,98 0,52 0,5 0,24 0,16 0,11 0,07 0,05 0,04 0,02 0,02 0,01 0,01 1 7 1 0 0,8 0,3 2 4 37
  36. Ví dụ 1: Xác định lượng nhiệt bức xạ lớn nhất vào qua cửa sổ bằng kính cơ bản, rộng 5m2. Cho biết địa phương nới lắp đặt công trình ở vĩ độ 20o Bắc, kính quay về hướng Đông, khung cửa bằng sắt, nhiệt độ đọng sương trung bình là 25oC, trời không sương mù, độ cao so với mặt nước biển là 100m. o 2 -Ứng với 20 Bắc , hướng Đông , theo bảng 3-8 , tra được Rmax = 520 W/m vào 8 giờ tháng 4 và tháng 8 - Hệ số εc = 1 + 0,023x100/1000 = 1,0023 - Hệ số εds = 1 - 0,13 (25-20)/10 = 1,065 - Trời không mây nên εmm = 1 - Khung cửa kính là khung sắt nên εkh = 1,17 - Kính là kính cơ bản và không có rèm che nên εk = εm =1 Theo công thức (3-21) ta có : Q = 5 x 520 x 1,0023 x 1,065 x 1,17 = 3247 W Ví dụ 2 : Xác định lượng nhiệt bức xạ xâm nhập không gian điều hoà qua 10m2 kính chống nắng màu xám dày 6mm, đặt hướng Tây Nam, ở TP. Hồ Chí Minh, bên trong có màn che kiểu Hà Lan. Vị trí lắp đặt có độ cao so với mặt nước biển không đáng kể, nhiệt độ động sương trung bình 24oC, trời không mây, khung cửa bằng gổ. - Lượng nhiệt bức xạ qua kính được xác định theo công thức : Q = F.Rxn.εc.εds.εmmεkh - Các hệ số εc = εmm = εkh = 1 - Hệ số εds = 1+ 0,13.(24 - 20)/10 = 1,052 - Lượng nhiệt xâm nhập : Rxn = [0,4αk + τk.(αm+τm+ρk.ρm+0,4αk.αm)].R / 0,88 = [ 0,4 x 0,51 + 0,44.(0,09 + 0,14 + 0,05x0,77+0,4x0,51x0.09] R/0,88 = 0,375.R o 2 - Giá trị R tra theo bảng 3-7 với 10 vĩ Bắc, hướng Tây Nam : Rmax = 508 W/m vào lúc 15 giờ tháng 1 và 11. Q = 10 x 0,375 x 508 x 1,052 = 2004 W b. Nhiệt lượng bức xạ mặt trời qua kết cấu bao che Q62. Khác với cửa kính cơ chế bức xạ mặt trời qua kết cấu bao che được thực hiện như sau - Dưới tác dụng của các tia bức xạ mặt trời, bề mặt bên ngoài cùng của kết cấu bao che sẽ dần dần nóng lên do hấp thụ nhiệt. Lượng nhiệt này sẽ toả ra môi trường một phần, phần còn lại sẽ dẫn nhiệt vào bên trong và truyền cho không khí trong phòng bằng đối lưu và bức xạ. Quá trình truyền này sẽ có độ chậm trễ nhất định. Mức độ chậm trễ phụ thuộc bản chất kết cấu tường, mức độ dày mỏng. Thông thường người ta bỏ qua lượng nhiệt bức xạ qua tường. Lượng nhiệt truyền qua mái do bức xạ và độ chênh nhiệt độ trong phòng và ngoài trời được xác định theo công thức: Q62 = F.k.ϕm.∆t, W (3-26) F - Diện tích mái (hoặc tường), m2 k - Hệ số truyền nhiệt qua mái (hoặc tường), W/m2.oC ∆t = tTD - tT độ chênh nhiệt độ tương đương tTD = εs.Rxn / αN (3-27) εs - Hệ số hấp thụ của mái và tường 2 αN = 20 W/m .K - Hệ số toả nhiệt đối lưu của không khí bên ngoài 2 Rnx = R/0,88 - Nhiệt bức xạ đập vào mái hoặc tường, W/m R - Nhiệt bức xạ qua kính vào phòng (tra theo bảng 3-7), W/m2 ϕm - Hệ số màu của mái hay tường + Màu thẩm : ϕm = 1 + Màu trung bình : ϕm = 0,87 + Màu sáng : ϕm = 0,78 38
  37. εs - Hệ số hấp thụ của tường và mái phụ thuộc màu sắc, tính chất vật liệu, trạng thái bề mặt tra theo bảng dưới đây Bảng 3.9 : Độ đen bề mặt kết cấu bao che STT Vật liệu và mầu sắc Hệ số ε A Mặt mái 1 Fibrô xi măng, mới, màu trắng 0,42 2 Fibrô xi măng , sau 6 tháng sử dụng 0,61 3 Fibrô xi măng , sau 12 năm sử dụng 0,71 4 Fibrô xi măng màu trắng, quét nước xi măng 0,59 5 Fibrô xi măng màu trắng sau 6 năm sử dụng 0,83 6 Tấm ép gợn sóng bằng bông khoáng 0,61 7 Giấy dầu lợp nhà để thô 0,91 8 Giấy dầu lợp nhà để thô, rắc hạt khoáng phủ mặt 0,84 9 Giấy dầu lợp nhà để thô, rắc cát màu xám 0,88 10 Giấy dầu lợp nhà để thô, rắc cát màu xẩm 0,90 11 Tôn màu sáng 0,8 12 Tôn màu đen 0,86 13 Ngói màu đỏ hay nâu 0,65 14 Ngói màu đỏ tươi 0,6 15 Ngói xi măng màu xám 0,65 16 Thép đánh bóng hay màu trắng 0,45 17 Thép đánh bóng hay mạ màu xanh 0,76 18 Tôn tráng kẽm mới 0,64 19 Tôn tráng kẽm bị bụi bẩn 0,90 20 Nhôm không đánh bóng 0,52 21 Nhôm đánh bóng 0,26 B Mặt quét sơn 22 Sơn màu đỏ sáng 0,52 23 Sơn màu xanh da trời 0,64 24 Sơn màu tím 0,83 25 Sơn màu vàng 0,44 26 Sơn màu đỏ 0,63 C Mặt tường 27 Đá granit mài nhẵn, màu đỏ, xám nhạt 0,55 28 Đá granit mài nhẵn đánh bóng, màu xám 0,60 29 Đá cẩm tạch mài nhẵn màu trắng 0,30 30 Gạch tráng men màu trắng 0,26 31 Gạch tráng men màu nâu sáng 0,55 32 Gạch nung mầu đỏ mới 0,70 0,74 33 Gạch nung, có bụi bẩn 0,77 34 Gạch gốm ốp mặt mầu sáng 0,45 35 Bê tông nhẵn phẳng 0,54 - 0,65 36 Trát vữa màu vàng, trắng 0,42 37 Trát vữa màu xi măng nhạt 0,47 39
  38. 3.2.7 Nhiệt do lọt không khí vào phòng Q7 Khi có độ chênh áp suất trong nhà và bên ngoài thì sẽ có hiện tượng rò rỉ không khí . Việc này luôn luôn kèm theo tổn thất nhiệt. Nói chung việc tính tổn thất nhiệt do rò rỉ thường rất phức tạp do khó xác định chính xác lưu lượng không khí rò rỉ. Mặt khác các phòng có điều hòa thường đòi hỏi phải kín. Phần không khí rò rỉ có thể coi là một phần khí tươi cung cấp cho hệ thống. Q7 = L7.(IN - IT) = L7 .Cp(tN-tT) + L7.ro(dN-dT) (3-28) L7 - Lưu lượng không khí rò rỉ, kg/s IN, IT - Entanpi của không khí bên ngoài và bên trong phòng, kJ/kg o tT, tN - Nhiệt độ của không khí tính toán trong nhà và ngoài trời, C dT, dN - Dung ẩm của không khí tính toán trong nhà và ngoài trời, g/kg.kk Tuy nhiên, lưu lượng không khí rò rỉ Lrr thường không theo quy luật và rất khó xác định. Nó phụ thuộc vào độ chênh lệch áp suất, vận tốc gió, kết cấu khe hở cụ thể, số lần đóng mở cửa vv. Vì vậy trong các trường hợp này có thể xác định theo kinh nghiệm Q7h = 0,335.(tN - tT).V.ξ , W (3-29) Q7w = 0,84.(dN - dT).V.ξ , W (3-30) V - Thể tích phòng, m3 ξ - Hệ số kinh nghiệm cho theo bảng 3.10 dưới đây Bảng 3.10 : Hệ số kinh nghiệm ξ Thể tích 3000 V, m3 ξ 0,7 0,6 0,55 0,5 0,42 0,4 0,35 Tổng lượng nhiệt do rò rỉ không khí: Q7 = Q7h + Q7w (3-31) Trong trường hợp ở các cửa ra vào số lượt người qua lại tương đối nhiều , cần bổ sung thêm lượng không khí . Gc = Lc.n.ρ (3-32) Gc - Lượng không khí lọt qua cửa, kg/giờ 3 Lc - Lượng không khí lọt qua cửa khi 01 người đi qua, m /người n - Số lượt người qua lại cửa trong 1 giờ. ρ - Khối lượng riêng của không khí, kg/m3 Như vậy trong trường hợp này cần bổ sung thêm Q’7h = 0,335.(tN - tT).Lc.n , W (3-33) Q’7w = 0,84.(dN - dT). Lc.n , W (3-34) Bảng 3-11 dưới đây dẫn ra lượng khô khí lọt qua cửa khi 01 người đi qua. 3 Bảng 3-11 : Lượng không khí lọt qua của Lc, m /người 3 n, Người/giờ Lưu lượng Lc, m /người Cửa thường Cửa xoay < 100 3 0,8 100 ÷ 700 3 0,7 700 ÷ 1400 3 0,5 1400 ÷ 2100 2,75 0,3 40
  39. 3.2.8 Nhiệt truyền qua kết cấu bao che Q8 Người ta chia ra làm 2 tổn thất - Tổn thất do truyền nhiệt qua trần mái, tường và sàn (tầng trên) : Q81 - Tổn thất do truyền nhiệt qua nền : Q82 Tổng tổn thất truyền nhiệt Q8 = Q81 + Q82 (3-35) 3.2.8.1 Nhiệt truyền qua tường, trần và sàn tầng trên Q81 Nhiệt lượng truyền qua kết cấu bao che được tính theo công thức sau đây : Q81 = k.F.∆t (3-36) k -Hệ số truyền nhiệt của kết cấu bao che, W/m2.oC F - Diện tích bê mặt kết cấu bao che ∆t - Độ chênh nhiệt độ tính toán, oC 1. Xác định độ chênh nhiệt độ tính toán. - Mùa hè : ∆tH = ϕ.(tN - tT) (3-37) - Mùa Đông : ∆tĐ = ϕ.(tT - tN) (3-38) o tT - Nhiệt độ tính toán trong phòng, C o tN - Nhiệt độ tính toán bên ngoài, C ϕ - Hệ số tính đến vị trí của kết cấu bao che đối với không khí bên ngoài a) Đối với tường bao Đối với tường bao trực tiếp xúc với môi trường không khí bên ngoài thì ϕ = 1. Trường hợp tường ngăn nằm bên trong công trình không trực tiếp tiếp xúc với không khí bên ngoài trời thì hệ số ϕ sẽ được chọn tuỳ trường hợp cụ thể dưới đây. b) Đối với trần có mái - Mái bằng tôn, ngói, fibrô xi măng với kết cấu không kín ϕ = 0,9 - Mái bằng tôn, ngói, fibrô xi măng với kết cấu kín ϕ = 0,8 - Mái nhà lợp bằng giấy dầu ϕ = 0,75 c) Tường ngăn với phòng không có điều hoà (phòng đệm) - Nếu phòng đệm tiếp xúc với không khí bên ngoài ϕ = 0,7 - Nếu phòng đệm không tiếp xúc với không khí bên ngoài ϕ = 0,4 d) Đối với sàn trên tầng hầm - Tầng hầm có cửa sổ ϕ = 0,6 - Tầng hầm không có cửa sổ ϕ = 0,4 e) Đối với tường ngăn với phòng có điều hoà Trong trường hợp này ta không tính ϕ = 0 2. Xác định hệ số truyền nhiệt qua tường và trần. (3-39) 41
  40. 1 1 k = = R 1 δi 1 o + ∑ + α T λi α N 2 o αT - Hệ số toả nhiệt bề mặt bên trong của kết cấu bao che, W/m , C 2 o αT - Hệ số toả nhiệt bề mặt bên ngoài của kết cấu bao che, W/m , C δi, - Chiều dày của lớp thứ i , m λi - Hệ số dẫn nhiệt lớp thứ i, W/m.oC a) Hệ số trao đổi nhiệt bên ngoài và bên trong phòng Bảng 3.12 : Hệ số trao đổi nhiệt bên ngoài và bên trong Dạng và vị trí bề mặt kết cấu bao che αT αN W/m2.oC W/m2.oC - Bề mặt tường, trần, sàn nhẵn 11,6 - Bề mặt tường, trần, sàn có gờ, tỷ số chiều cao 8,7 của gờ và khoảng cách 2 mép gờ 0,3 7,6 - Tường ngoài, sàn, mái tiếp xúc trực tiếp 23,3 không khí bên ngoài. - Bề mặt hướng ra hầm mái, hoặc hướng ra các 11,6 phòng lạnh , sàn trên tầng hầm b) Nhiệt trở của lớp không khí Nếu trong kết cấu bao che có lớp đệm không khí thì tổng nhiệt trở dẫn nhiệt phải cộng thêm nhiệt trở của lớp không khí này. Thường lớp đệm này được làm trên trần để chống nóng. Bảng 3.13 : Trị số nhiệt trở của không khí Rkk Bề dày Nhiệt trở lớp không khí 2 o lớp không khí Rkk, m . C/W mm Lớp không khí nằm ngang, dòng Lớp không khí nằm ngang, dòng nhiệt đi từ dưới lên nhiệt đi từ trên xuống Mùa Hè Mùa Đông Mùa Hè Mùa Đông 10 0,129 0,146 0,129 0,155 20 0,138 0,155 0,155 0,189 30 0,138 0,163 0,163 0,206 50 0,138 0,172 0,172 0,224 100 0,146 0,181 0,181 0,232 150 0,155 0,181 0,189 0,249 200 ÷ 300 0,155 0,189 0,189 0,249 Ghi chú: Trị số Rkk cho ở bảng trên đây ứng với độ chênh nhiệt độ trên 2 bề mặt của lớp không khí ∆t = 10oC. Nếu ∆t ≠ 10oC ta cần nhân trị số cho ở bảng 3-14 dưới đây Bảng 3.14: Hệ số hiệu chỉnh nhiệt trở không khí 42
  41. Độ chênh nhiệt độ ∆t, oC 10 8 6 4 2 Hệ số hiệu chỉnh 1 1,05 1,1 1,15 1,2 c) Hệ số dẫn nhiệt của vật liệu xây dựng Hệ số dẫn nhiệt λ của vật liệu thay đổi phụ thuộc vào độ rỗng, độ ẩm và nhiệt độ của vật liệu. - Độ rỗng càng lớn thì λ càng bé, vì các lổ khí trong vật liệu có hệ số dẫn nhiệt thấp - Độ ẩm tăng thì hệ số dẫn nhiệt tăng do nước chiếm chổ các lổ khí trong vật liệu, do hệ số dẫn nhiệt của nước cao hơn nhiều so với hệ số dẫn nhiệt của không khí. - Nhiệt độ tăng, hệ số dẫn của vật liệu tăng. Sự thay đổi của hệ số dẫn nhiệt λ khi nhiệt độ thay đổi theo quy luật bậc nhất : o λ = λo + b.t kCal/m.h. C (3-40) trong đó: o o λo - Hệ số dẫn nhiệt của vật liệu ở 0 C, kCal/m.h. C t - Nhiệt độ vật liệu, oC b - Hệ số tỷ lệ phụ thuộc vào tính chất vật liệu, có giá trị nằm trong khoảng 0,0001 ÷ 0,001. Tuy nhiên, do sự phụ thuộc vào nhiệt độ của vật liệu không đáng kể nên trong các tính toán thường coi hệ số dẫn nhiệt của các vật liệu là không đổi và lấy theo bảng dưới đây. Bảng 3.15 : Hệ số dẫn nhiệt của các vật liệu STT Vật liệu Khối lượng Hệ số dẫn riêng, kg/m3 nhiệt λ W/m.oC I- VẬT LIỆU AMIĂNG 1 Tấm và bản ximăng amiăng 1900 0,349 2 Tấm cách nhiệt ximăng amiăng 500 0,128 3 Tấm cách nhiệt ximăng amiăng 300 0,093 II- BÊ TÔNG 4 Bê tông cốt thép 2400 1,547 5 Bê tông đá dăm 2200 1,279 6 Bê tông gạch vỡ 1800 0,872 7 Bê tông xỉ 1500 0,698 8 Bê tông bột hấp hơi nóng 1000 0,395 9 Bê tông bọt hấp hơi nóng 400 0,151 10 Tấm thạch cao ốp mặt tường 1000 0,233 11 Tấm và miếng thạch cao nguyên chất 1000 0,407 III- VẬT LIỆU ĐẤT 12 Gạch mộc 1600 0,698 IV- MẢNG GẠCH XÂY ĐẶC 13 Gạch thông thường với vữa nặng 1800 0,814 14 Gạch rỗng (γ=1300), xây vữa nhẹ (γ=1400) 1350 0,581 15 Gạch nhiều lỗ xây vữa nặng 1300 0,523 V- VẬT LIỆU TRÁT VÀ VỮA 16 Vữa xi măng và vữa trát xi măng 1800 0,930 17 Vữa tam hợp và vữa trát tam hợp 1700 0,872 18 Vữa vôi trát mặt ngoài 1600 0,872 43
  42. 19 Vữa vôi trát mặt trong 1600 0,698 20 Tấm ốp mặt ngoài bằng thạch cao 1000 0,233 21 Tấm sợi gỗ cứng ốp mặt 700 0,233 VI- VẬT LIỆU CUỘN 22 Giấy cactông thường 700 0,174 23 Giấy tẩm dầu thông nhựa đường bitum hay hắc ín 600 0,174 24 Thảm bông dùng tronh nhà 150 0,058 25 Thảm bông khoáng chất 200 0,069 VII- VẬT LIỆU THUỶ TINH 26 Kính cửa sổ 2500 0,756 27 Sợi thuỷ tinh 200 0,058 28 Thuỷ tinh hơi và thuỷ tinh bọt 500 0,163 29 Thuỷ tinh hơi và thuỷ tinh bọt 300 0,116 VIII- VẬT LIỆU GỖ 30 Gổ thông, tùng ngang thớ 550 0,174 31 Mùn cưa 250 0,093 32 Gỗ dán 600 0,174 33 Tấm bằng sợi gỗ ép 600 0,163 34 Tấm bằng sợi gỗ ép 250 0,076 35 Tấm bằng sợi gỗ ép 150 0,058 36 Tấm gỗ mềm (lie) 250 0,069 IX- VẬT LIỆU KHÁC 37 Tấm silicat bề mặt in hoa và tấm ximăng silicat in hoa 600 0,233 38 Tấm silicat bề mặt in hoa và tấm ximăng silicat in hoa 400 0,163 39 Tấm silicat bề mặt in hoa và tấm ximăng silicat in hoa 250 0,116 3.2.8.2 Nhiệt truyền qua nền đất Q82 Để tính nhiệt truyền qua nền người ta chia nền thành 4 dãi, mỗi dãi có bề rộng 2m như hình vẽ 3-1. Theo cách phân chia này 2 o - Dải I : k1 = 0,5 W/m . C , F1 = 4.(a+b) 2 o - Dải II : k2 = 0,2 W/m . C , F2 = 4.(a+b) - 48 2 o - Dải III : k3 = 0,1 W/m . C , F3 = 4.(a+b) - 80 2 o - Dải IV : k4 = 0,07 W/m . C , F4 = (a-12)(b-12) Khi tính diện tích các dải, dải I ở các góc được tính 2 lần vì ở các góc nhiệt có thể truyền ra bên ngoài theo 2 hướng - Khi diện tích phòng nhỏ hơn 48m2 thì có thể coi toàn bộ là dải I - Khi chia phân dải nếu không đủ cho 4 dải thì ưu tiên từ 1 đến 4. Ví dụ chỉ chia được 3 dải thì coi dải ngoài cùng là dải I, tiếp theo là dải II và III. Tổn thất nhiệt qua nền do truyền nhiệt 44
  43. Q82 = (k1.F1 + k2.F2 + k3.F3 + k4.F4).(tN - tT) (3-41) Hình 3.1 : Cách phân chia dãi nền 3.2.9 Tổng lượng nhiệt thừa QT Tổng nhiệt thừa của phòng : 8 Q = Q , kW (3-42) T ∑i=1 , Nhiệt thừa QT được sử dụng để xác định năng suất lạnh của bộ xử lý không khí trong chương 4. Không nên nhầm lẫn khi cho rằng nhiệt thừa QT chính là năng suất lạnh của bộ xử lý không khí . Tổng nhiệt thừa của phòng QT gồm nhiệt hiện Qhf và nhiệt ẩn Qwf của phòng. - Tổng nhiệt hiện của phòng : Qhf = Q1 + Q2 + Q3h + Q4h + Q5 + Q6 + Q7h + Q8 - Tổng nhiệt ẩn của phòng : Qwf = Q3w + Q4w + Q7w Như đã trình bày ở trên , trường hợp không gian khảo sát là nhà hàng thì bình quân mỗi người cộng thêm 20W do thức ăn toả ra , trong đó 10W là nhiệt hiện và 10w là nhiệt ẩn. 3.3 XÁC ĐỊNH LƯỢNG ẨM THỪA WT 3.3.1 Lượng ẩm do người tỏa ra W1 Lượng ẩm do người tỏa ra được xác định theo công thức sau : W1 = n.gn , kg/s (3-43) n - Số người trong phòng. gn - Lượng ẩm do 01 người tỏa ra trong phòng trong một đơn vị thời gian, kg/s Lượng ẩm do 01 người toả ra gn phụ thuộc vào cường độ lao động và nhiệt độ phòng. Trị số gn có thể tra cứu theo bảng 3.16 dưới đây : Bảng 3.16 : Lượng ẩm do người tỏa ra, g/giờ,người Trạng thái lao động Nhiệt độ không khí trong phòng, oC 10 15 20 25 30 35 Trẻ em dưới 12 tuổi 15 18 22 25 35 60 45
  44. Tĩnh tại 30 40 40 50 75 115 Lao động trí học (cơ 30 40 75 105 140 180 quan, trường học) Lao động nhẹ 40 55 75 115 150 200 Lao động trung bình 70 110 140 185 230 280 Lao động nặng 135 185 240 295 355 415 Phòng ăn, khách sạn 90 90 171 165 250 Vũ trường 160 160 200 305 465 3.3.2 Lượng ẩm bay hơi từ các sản phẩm W2 Khi đưa các sản phẩm ướt vào phòng thì có một lượng hơi nước bốc vào phòng. Ngược lại nếu đưa sản phẩm khô thì nó sẽ hút một lượng ẩm. W2 = G2.(y1% - y2%)/100 kg/s (3-44) y1, y2 - Lần lượt là thủy phần của sản phẩm khi đưa vào và ra. g2 - Lưu lượng của sản phẩm , kg/s Thành phần ẩm thừa này chỉ có trong công nghệp 3.3.3 Lượng ẩm do bay hơi đoạn nhiệt từ sàn ẩm W3 Khi sàn bị ướt thì một lượng hơi ẩm từ đó có thể bốc hơi vào không khí làm tăng độ ẩm của nó. Lượng hơi ẩm được tính như sau : W3 = 0,006.Fs.(tT - tư) kg/s (3-45) 2 Fs - Diện tích sàn bị ướt, m tư - Nhiệt độ nhiệt kế ướt ứng với trạng thái trong phòng. Lượng ẩm do bay hơi đoạn nhiệt được tính cho nơi thường xuyên nền nhà bị ướt như ở khu nhà giặt, nhà bếp, nhà vệ sinh . Riêng nền ướt do lau nhà thường nhất thời và không liên tục, nên khi tính lưu ý đến điểm này. 3.3.4 Lượng ẩm do hơi nước nóng mang vào W4 Khi trong phòng có rò rỉ hơi nóng , ví dụ như hơi từ các nồi nấu, thì cần phải tính thêm lượng hơi ẩm thoát ra từ các thiết bị này. W4 = Gh (3-46) 3.3.5 Lượng ẩm thừa WT Tổng tất các nguồn ẩm toả ra trong phòng gọi là lượng ẩm thừa 4 (3-47) WT = ∑Wi , kg / s i=1 Nhiệt thừa WT được sử dụng để xác định năng suất làm khô của thiết bị xử lý không khí ở chương 4. 3.4 KIỂM TRA ĐỌNG SƯƠNG TRÊN VÁCH Như đã biết khi nhiệt độ vách tW thấp hơn nhiệt độ đọng sương của không khí tiếp xúc với nó thì sẽ xãy ra hiện tượng đọng sương trên vách đó. Tuy nhiên do xác định nhiệt độ vách khó nên người ta quy điều kiện đọng sương về dạng khác. 46
  45. * Về mùa hè : Mùa hè ta thực hiện chế độ điều hòa (làm lạnh), nhiệt độ bên ngoài lớn hơn nhiệt độ bên trong: T T Khi đó t W > tT > t s , như vậyvách trong không thể xãy ra hiện tượng đọng sương. N Gọi t s là nhiệt độ đọng sương vách ngoài ta có điều kiện đọng sương: N N t s > t W Theo phương trình truyền nhiệt ta có N k.(tN - tT) = αN.(tN - t W) hay: N k = α N.(tN - t W)/ (tN - tT) N N Khi giảm t W thì k tăng, khi giảm tới t s thì trên tường đọng sương, khi đó ta được giá trị kmax N kmax = α N.(tN - t s )/ (tN - tT) Điều kiện đọng sương được viết lại: N kmax = α N.(tN - t s )/ (tN - tT) > k (3-48) * Về mùa đông : Về mùa đông lý luận tương tự trên ta thấy nếu xãy ra động sương thì chỉ có thể xãy ra trên vách tường trong. Khi đó điều kiện để không đọng sương trên vách trong là: T kmax = α T.(tT - t s )/ (tT - tN) > k (3-49) * 47
  46. CHƯƠNG 4 THÀNH LẬP VÀ TÍNH TOÁN CÁC SƠ ĐỒ ĐIỀU HOÀ KHÔNG KHÍ Thành lập sơ đồ điều hòa không khí là xác định các quá trình thay đổi trạng thái của không khí trên đồ thị I-d nhằm mục đích xác định các khâu cần xử lý và năng suất của nó để đạt được trạng thái không khí cần thiết trước khi cho thổi vào phòng. Sơ đồ điều hòa không khí được thành lập trên cơ sở : a) Điều kiện khí hậu địa phương nơi lắp đặt công trình :tN và ϕN. b) Yêu cầu về tiện nghi hoặc công nghệ : tT và ϕT. c) Các kết quả tính cân bằng nhiệt : QT, WT, d) Thỏa mãn điều kiện vệ sinh: 1. Nhiệt độ không khí trước khi thổi vào phòng không được quá thấp so với nhiệt độ trong phòng nhằm tránh gây cảm lạnh cho người sử dụng, cụ thể như sau : tV ≥ tT - a (4-1) - Đối với hệ thống điều hoà không khí thổi từ dưới lên (miệng thổi đặt trong vùng làm việc) : a = 7 oC - Đối với hệ thống điều hoà không khí thổi từ trên xuống : a = 10oC Nếu điều kiện vệ sinh không thỏa mãn thì phải tiến hành sấy nóng không khí tới nhiệt độ tV = tT - a thoả mãn điều kiện vệ sinh rồi cho thổi vào phòng. 2. Lượng khí tươi cấp vào phòng phải đảm bảo đủ cho người trong phòng. LN = n.mk = n.ρk.Vk (4-2) trong đó: n - Số người trong phòng mk- Khối lượng gió tươi cần thiết cung cấp cho 01 người trong một đơn vị thời gian, kg/người, giờ . Vk - Lượng không khí tươi cần cung cấp cho một người trong một đơn vị thời gian, tra theo bảng 2-7, m3/người, giờ. ρ - Khối lượng riêng của không khí, ρ = 1,2 kg/m3. Tuy nhiên lưu lượng gió bổ sung không được nhỏ hơn 10% tổng lượng gió cung cấp cho phòng. 4.1 TÍNH TOÁN CÁC SƠ ĐỒ ĐIỀU HOÀ KHÔNG KHÍ THEO ĐỒ THỊ I-d 4.1.1 Phương trình tính năng suất gió Từ các phương trình cân bằng nhiệt, ẩm và chất độc hại ta xác định được phương trình xác định năng suất gió. - Năng suất gió để thải nhiệt : Lq = QT/(IT -) (4-3) - Năng suất gió để thải ẩm: LW = WT/(dT - dV) (4-4) - Năng suất gió để thải chất độc hại: Lz = GT/(zT - zV) ≈ GT/zT (4-5) 49
  47. Trong các công thức trên T là trạng thái không khí trong phòng, V là trạng thái không khí trước khi thổi vào phòng. Khi thiết kế hệ thống điều hoà thường phải đảm bảo 2 thông số nhiệt và ẩm không đổi theo yêu cầu , tức là phải thỏa mãn đồng thời 2 phương trình cân bằng nhiệt và ẩm. Hay nói cách khác ta có : LQ = Lw Q W T = T (4-6) I T − IV dT − dV Q I − I T = T V (4-7) WT dT − dV Suy ra Hay Đại lượng εT gọi là hệ số góc tia của quá trình tự thay đổi trạng thái của không khí trong phòng do nhận nhiệt thừa và ẩm thừa. Như vậy để trạng thái của không khí trong phòng không đổi thì trạng thái không khí thổi QT ∆I (4-8) = = ε T WT ∆d vào phòng V(tV, ϕV) phải luôn luôn nằm trên đường εT = QT/WT đi qua điểm T(tT, ϕT) 4.1.2 Các sơ đồ điều hoà không khí mùa hè 4.1.2.1. Sơ đồ thẳng Sơ đồ thẳng là sơ đồ không có tái tuần hoàn không khí từ phòng về thiết bị xử lý không khí. Trong sơ đồ này toàn bộ không khí đưa vào thiết bị xử lý không khí là không khí tươi. Sơ đồ thẳng được trình bày trên hình 4.1 I ϕ % N =95 N ϕ 5 tN 2 6 ϕ=100% 3 7 T N O 4 V t T T ε 1 Q ϕ T T WT T O=V d Hình 4.1 : Sơ đồ nguyên lý và biểu diễn sự thay đổi trạng thái không khí trên đồ thị I-d * Nguyên lý làm việc: Không khí bên ngoài trời có trạng thái N(tN,ϕN) qua cửa lấy gió có van điều chỉnh (1), được đưa vào buồng xử lý nhiệt ẩm (2), tại đây không khí được xử lý theo chương trình định sẵn đến một trạng thái O nhất định nào đó và được quạt (3) vận chuyển theo đường ống gió (4) vào phòng (6) qua các miệng thổi (5). Không khí tại miệng thổi (5) có trạng thái V sau khi vào phòng nhận nhiệt thừa và ẩm thừa và tự thay đổi đến trạng thái T(tT, ϕT) theo tia quá trình εT = QT/WT . Sau đó không khí được thải ra bên ngoài qua các cửa thải (7). 50
  48. Sơ đồ thẳng được sử dụng trong các trường hợp sau: - Khi kênh gió hồi quá lớn việc thực hiện hồi gió quá tốn kém hoặc không thực hiện được do không gian nhỏ hẹp . - Khi trong không gian điều hòa có sinh ra nhiều chất độc hại, việc hồi gió không có lợi. Mùa hè nước ta nhiệt độ và độ ẩm bên ngoài phòng thường cao hơn nhiệt độ và độ ẩm trong phòng. Vì thế điểm N thường nằm bên trên phải của điểm T. * Xác định các các điểm nút : Theo đồ thị biểu thị quá trình ta có: - Quá trình NO là quá trình xử lý không khí diễn ra ở thiết bị xử lý không khí. Trạng thái O cuối quá trình xử lý không khí có độ ẩm ϕo ≈ 95%. - Quá trình OV là quá trình không khí nhận nhiệt khi dẫn qua hệ thống đường ống. Quá trình này không trao đổi ẩm, đó là quá trình gia nhiệt đẳng dung ẩm. Vì tất cả các đường ống dẫn không khí lạnh đều bọc cách nhiệt nên tổn thất này không đáng kể. Thực tế có thể coi V≡O - Quá trình VT là quá trình không khí tự thay đổi trạng thái khi nhận nhiệt thừa và ẩm thừa nên có hệ số góc tia εVT = εT = QT/WT Từ phân tích trên ta có thể xác định các điểm nút như sau: - Xác định các điểm N(tN, ϕN), T(tT, ϕT) theo các thông số tính toán ban đầu. - Qua điểm T kẻ đường ε = εT = QT/WT cắt đường ϕo = 0,95 tại O≡V - Nối NO ta có quá trình xử lý không khí Cần lưu ý trạng thái thổi vào V≡O phải đảm bảo điều kiện vệ sinh là nhiệt độ không được quá thấp so với nhiệt độ trong phòng để tránh gây cảm lạnh cho người sử dụng. tV ≥ tT - a Nếu không thỏa mãn điều kiện vệ sinh , thì phải gia nhiệt không khí từ trạng thái O lên trạng thái V thoả mãn điều kiện vệ sinh mới thổi vào phòng , tức là tV = tT - a (hình 4.2). I ϕ N % =95 N ϕ t ϕ N T ϕ=100% T t T ε V T a t =tT - V O Hình d 4.2: Sơ đồ thẳng khi nhiệt độ tV thấp Trong trường hợp này các điểm O và V xác định lại như sau : - Điểm V là giao của đường ε = εT = QT/WT đí qua điểm T và đường t = tT - a . - Điểm O là giao của đường thẳng đứng (đẳng dung ẩm) qua điểm V và đường ϕo = 0,95. * Các thiết bị chính của quá trình Để thực hiện được sơ đồ thẳng mùa hè cần có các thiết bị chính sau : Thiết bị xử lý không khí, quạt cấp gió, bộ sấy cấp II, hệ thống kênh cấp gió, miệng thổi. * Xác định năng suất các thiết bị - Năng suất gió thổi vào phòng : QT WT L = = 51 , kg / s I T − IV dT − dV
  49. - Năng suất lạnh của thiết bị xử lý: - Năng suất làm khô của thiết bị xử lý: (4-9) - Công suất nhiệt của thiết bị sấy cấp II (nếu có) : * Kết luận: I N − I o Qo = L.(I N − I o ) = QT , kW (4-10) dI N −−Id o W = L.(d − d ) = W T V , kg / s N o T I − I (4-11) dTV − dVo QSII = L.(IV − I o ) = QT , kW (4-12) I T − IV - Sơ đồ thẳng có ưu điểm là đơn giản, gọn nhẹ dễ lắp đặt. - Không tận dụng nhiệt từ không khí thải nên hiệu quả thấp. - Thường được sử dụng trong các hệ thống nơi có phát sinh các chất độc, hôi hoặc đường ống quá xa, cồng kềnh không kinh tế hoặc không thể thực hiện được. 4.1.2.2. Sơ đồ tuần hoàn không khí một cấp Để tận dụng nhiệt của không khí thải người ta sử dụng sơ đồ tuần hoàn1 cấp. Trên hình 4.3 là sơ đồ nguyên lý hệ thống tuần hoàn 1 cấp * Nguyên lý làm việc: Không khí bên ngoài trời có trạng thái N(tN,ϕN) với lưu lượng LN qua cửa lấy gió có van điều chỉnh (1), được đưa vào buồng hòa trộn (3) để hòa trộn với không khí hồi có trạng thái T(tT,ϕT) với lưu lượng LT từ các miệng hồi gió (2). Hổn hợp hòa trộn có trạng thái C sẽ được đưa đến thiết bị xử lý (4), tại đây nó được xử lý theo một chương trình định sẵn đến một trạng thái O và được quạt (5) vận chuyển theo kênh gió (6) vào phòng (8) . Không khí sau khi ra khỏi miệng thổi (7) có trạng thái V vào phòng nhận nhiệt thừa QT và ẩm thừa WT và tự thay đổi trạng thái từ V đến T(tT, ϕT). Sau đó một phần không khí được thải ra ngoài và một phần lớn được quạt hồi gió (11) hút về qua các miệng hút (9) theo kênh (10) . Hình 4.3 Sơ đồ tuần hoàn 1 cấp L 3 4 N N 8 1 7 5 V 12 O L 6 T Q W C T T 9 2 LN + LT 11 LT 10 * Xác định các điểm nút trên I-d - Trạng thái C là trạng thái hoà trộn của dòng không khí tươi có lưu lượng LN và trạng thái N(tN, ϕN) với dòng không khí tái tuần hoàn với lưu lượng LT và trạng thái T(tT, ϕT) - Quá trình VT là quá trình không khí tự thay đổi trạng thái khi nhận nhiệt thừa và ẩm thừa nên có hệ số góc tia ε = εT = QT/WT. Điểm O≡V có ϕo ≈ 0,95 . Từ phân tích trên ta có cách xác định các điểm nút như sau : - Xác định các điểmN, T theo các thông số tính toán ban đầu. - Xác định điểm hòa trộn C theo tỉ lệ hòa trộn Ta có TC L L = N = N CN LT 52L − LN
  50. trong đó : LN - Lưu lượng gió tươi cần cung cấp được xác định theo điều kiện vệ sinh, kg/s. L - Lưu lượng gió tổng tuần hoàn qua thiết bị xử lý không khí được xác định theo công thức (4-13), kg/s - Điểm V≡ O là giao nhau của đường ε = εT = QT/WT đi qua điểm T với đường ϕo = 0,95. Nối CO ta có quá trình xử lý không khí. I ϕ N N t ϕ N 95% T ϕ= T t C T ϕ=100% εT O=V d Hình4.4 : Biểu diễn sơ đồ tuần hoàn 1 cấp trên đồ thị I-d Nếu nhiệt độ điểm O không phù hợp điều kiện vệ sinh thì phải tiến hành sấy không khí đến điểm V thoả mãn điều kiện vệ sinh tức là t = tT - a (xem hình 4-5). Khi đó các điểm V và O xác định như sau: - Từ T kẻ đường ε = εT = QT/WT cắt t = tT - a tại V - Từ V kể đường thẳng đứng cắt ϕo = 0,95 tại O. - Các điểm còn lại vẫn giữ nguyên vị trí. * Các thiết bị chính : Để thực hiện sơ đồ điều hòa không khí một cấp ta phải có các thiết bị chính sau đây : Quạt cấp gió, quạt hồi gió, thiết bị xử lý không khí, thiết bị sấy cấp 2, hệ thống kênh cấp gió, hồi gió, miệng thổi và miệng hút I ϕ N ϕ N tN 5% T ϕ=9 T t C T ϕ=100% ε T V =t -a tV T O d Hình4.5 : Sơ đồ tuần hoàn 1 cấp khi nhiệt độ tV thấp * Xác định năng suất các thiết bị - Năng suất gió : Q W L = T = T , kg / s I − I d − d (4-13) T V T 53 V
  51. - Lượng không khí bổ sung LN được xác định căn cứ vào số lượng người và lượng gió tươi cần cung cấp cho một người trong một đơn vị thời gian: LN = n.ρ.Vk (4-14) trong đó n - Tổng số người trong phòng, người Vk - Lượng không khí tươi cần cung cấp cho một người trong một đơn vị thời gian, tra theo bảng 2.6 Tuy nhiên lưu lượng gió bổ sung không được nhỏ hơn 10%.L. Vì thế khi LN tính theo các công thức trên mà nhỏ hơn 10% thì lấy LN = 0,1.L - Lưu lượng gió hồi : LT = L - LN (4-15) - Công suất lạnh của thiết bị xử lý không khí : I C − I O Qo = L.(I C − I O ) = QT . , kW (4-16) I T − IV - Năng suất làm khô của thiết bị xử lý: d C − d O Wo = L.(d C − d O ) = WT . , kg / s (4-17) dT − dV - Công suất nhiệt của thiết bị sấy cấp II (nếu có) IV − I O QSII = L.(IV − I O ) = QT . , kW (4-18) I T − IV * Kết luận: - Do có tận dụng nhiệt của không khí tái tuần hoàn nên năng suất lạnh và năng suất làm khô giảm so với sơ đồ thẳng. - Sơ đồ có tái tuần hoàn không khí nên chi phí đầu tư tăng. - Hệ thống đòi hỏi phải có thiết bị sấy cấp 2 để sấy nóng không khí khi không thỏa mãn điều kiện vệ sinh và do đó không kinh tế. 4.1.2.3 Sơ đồ tuần hoàn không khí hai cấp Để khắc phục nhược điểm của sơ đồ 1 cấp do phải có thiết bị sấy cấp 2 khi trạng thái V không thỏa mãn điều kiện vệ sinh, người ta sử dụng sơ đồ 2 cấp có thể điều chỉnh nhiệt độ không khí thổi vào phòng mà không cần có thiết bị sấy. 1. Sơ đồ điều chỉnh nhiệt độ thổi vào * Sơ đồ nguyên lý : L 3 4 6 N N 9 10 7 14 1 L 8 V C1 C2 T 2 11 QT WT LN + L T1 5 LT1 LT2 13 LT 12 Hình 4.6 : Sơ đồ tuần hoàn 2 cấp có điều chỉnh nhiệt độ * Nguyên lý làm việc: Không khí bên ngoài trời với lưu lượng LN và trạng thái N(tN,ϕN) được lấy qua cửa lấy gió có van điều chỉnh (1) vào buồng (3) hòa trộn với không khí hồi có lưu lượng LT1 và trạng thái T(tT,ϕT) để đạt một trạng thái C1 nào đó. Hổn hợp hòa 54
  52. trộn C1 sẽ được đưa đến thiết bị xử lý (4) và được xử lý đến trạng thái O. Sau đó đến buồng hoà trộn (6) để hòa trộn với không khí hồi có lưu lượng LT2 và trạng thái T(tT,ϕT) để đạt trạng thái C2 và được quạt (7) vận chuyển theo đường ống gió (8) vào phòng (10). Không khí sau khi ra khỏi miệng thổi (9) có trạng thái C2 vào phòng nhận nhiệt thừa và ẩm thừa và tự thay đổi trạng thái đến T(tT, ϕT) . Cuối cùng một lượng được thải ra ngoài qua cửa thải 14, phần lớn còn lại được hồi về để tiếp tục xử lý. * Xác định các điểm nút - Các điểm nút N(tN, ϕN), T(tT, ϕT) được xác theo các thông số tính toán. - Điểm hòa trộn C2 : Mục đích của việc hoà trộn là nhằm đảm bảo nhiệt độ không khí khi thổi vào phòng thoả mãn yêu cầu vệ sinh. Hay tC2 = tT - a. Như vậy điểm C2 là giao điểm của đường εT = QT/WT đi qua T với tC2 = tT - a. - Điểm O nằm trên đường ϕo = 0,95 và đường kéo dài TC2. - Điểm C1 được xác định theo tỉ số hòa trộn : LN/LT1 = TC1/C1N * Các thiết bị chính Để thực hiện sơ đồ điều hòa không khí hai cấp ta phải có các thiết bị chính sau đây : Quạt cấp gió, quạt hồi gió, thiết bị xử lý không khí , hệ thống kênh cấp gió, hồi gió và các miệng thổi, miệng hút. I ϕ N ϕ N tN 5% T ϕ=9 T t C1 T ϕ=100% εT C2 =t -a tV T O d Hình 4.7 : Biểu diễn sơ đồ tuần hoàn 2 cấp có điều chỉnh nhiệt độ trên I-d * Xác định năng suất các thiết bị - Lưu lượng gió : QT WT L = = , kg / s (4-19) I T − I C 2 dT − d C 2 - Lượng không khí bổ sung LN được xác định theo điều kiện vệ sinh như sau : LN = n.ρ.Vk kg/s (4-20) - Lưu lượng gió LT2 xác định theo phương pháp hình học dựa vào quá trình hòa trộn ở thiết bị hòa trộn (6): L + L L − L TC N T1 = T 2 = 2 (4-21) LT 2 LT 2 C2O Các điểm T, C2 và O đã được xác định nên có thể tính được LT2 - Lưu lượng gió LT1 LT1 = L - LN - LT2 (4-22) 55
  53. - Năng suất lạnh của thiết bị xử lý: Qo = (L-LT2).(IC1 - IO) , kW (4-23) - Năng suất làm khô của thiết bị xử lý: W = (L-LT2).(dC1 - dO) , kg/s (4-24) * Kết luận: Sơ đồ tuần hoàn 2 cấp có điều chỉnh nhiệt độ thổi vào có ưu điểm: - Nhiệt độ thổi vào phòng có thể dễ dàng điều chỉnh được nhờ điều chỉnh lượng gió trích LT2 nhằm nâng nhiệt độ thổi vào phòng thoả mãn điều kiện vệ sinh. Do đó sơ đồ 2 cấp có điều chỉnh nhiệt độ không cần trang bị thiết bị sấy cấp II. - Năng suất lạnh và năng suất làm khô yêu cầu của thiết bị xử lý giảm + Công suất lạnh giảm ∆QO = LT2.(IC1 - IO) + Lưu lượng gió giảm ∆L = LT2.(dC1 - dO) Như vậy ta không cần phải đầu tư hệ thống xử lý không khí quá lớn, cồng kềnh. - Phải có thêm buồng hòa trộn thứ 2 và hệ thống trích gió đến buồng hòa trộn này nên chi phí đầu tư và vận hành tăng. 2. Sơ đồ điều chỉnh nhiệt độ ẩm * Sơ đồ nguyên lý : L T2 4 LN N 9 10 1 5 7 14 L 8 V C1 C2 T 11 QT WT 2 LN + LT1 3 6 13 L 12 T Hình 4.8 :Sơ đồ tuần hoàn 2 cấp có điều chỉnh độ ẩm * Nguyên lý làm việc : Không khí bên ngoài trời có lưu lượng LN và trạng thái N(tN,ϕN) được lấy qua cửa lấy gió có van điều chỉnh (1), vào buồng (3) hòa trộn với không khí hồi có lưu lượng LT và trạng thái T(tT,ϕT) để đạt một trạng thái C1 nào đó. Hổn hợp hòa trộn C1 được chia làm 2 dòng, một dòng có lưu lượng (LN + LT1) được đưa đến thiết bị xử lý không khí (4) và được xử lý đến một trạng thái O sau đó đưa đến buồng hoà trộn (6) hòa trộn với dòng thứ 2 có lưu lượng LT2 trạng thái C1 và đạt được trạng thái C2. Không khí có trạng thái C2 tiếp tục được quạt (7) thổi theo kênh cấp gió (8) vào phòng (10) qua các miệng thổi (9). Một phần gió được thải ra bên ngoài qua cửa thải gió (14), phần còn lại tiếp tục được hồi về và lặp lại chu trình mới. * Xác định các điểm nút - Các điểm nút N(tN, ϕN), T(tT, ϕT) được xác theo các thông số tính toán. - Điểm C1 được xác định theo tỉ số hòa trộn : LN/LT = TC1/C1N - Điểm hòa trộn C2 : Mục đích của việc hoà trộn là nhằm nâng nhiệt độ không khí thổi vào phòng đạt yêu cầu vệ sinh, hay tC2 = tT - a. Như vậy điểm C2 là giao điểm của đường εT = QT/WT đi qua T với tC2 = tT - a. 56