Giáo trình Ô tô và ô nhiễm - Chương 3: Cơ chế hình thành nox trong quá trình cháy của động cơ đốt trong
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Ô tô và ô nhiễm - Chương 3: Cơ chế hình thành nox trong quá trình cháy của động cơ đốt trong", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- giao_trinh_o_to_va_o_nhiem_chuong_3_co_che_hinh_thanh_nox_tr.pdf
Nội dung text: Giáo trình Ô tô và ô nhiễm - Chương 3: Cơ chế hình thành nox trong quá trình cháy của động cơ đốt trong
- Chương 3 CƠ CHẾ HÌNH THÀNH NOX TRONG QUÁ TRÌNH CHÁY CỦA ĐỘNG CƠ ĐỐT TRONG 3.1. Giới thiệu NOx là tên gọi chung của oxyde nitơ gồm các chất NO, NO2 và N2O hình thành do sự kết hợp giữa oxy và nitơ ở điều kiện nhiệt độ cao. Chất ô nhiễm này ngày càng được quan tâm và trong một số trường hợp, nó là chất ô nhiễm chính làm giới hạn tính năng kỹ thuật của động cơ. Thật vậy, một trong những xu hướng nâng cao tính kinh tế của động cơ ngày nay là áp dụng kỹ thuật chế hòa khí phân lớp cho động cơ làm việc với hỗn hớp nghèo. Trong điều kiện đó, NOx là đối tượng chính của việc xử lý ô nhiễm. Mặt khác, việc xử lý NOx trong điều kiện đó gặp nhiều khó khăn vì bộ xúc tác ba chức năng chỉ hoạt động có hiệu quả khi a = 1. Các giải pháp kỹ thuật khác nhằm hạn chế NOx ngay trong quá trình cháy cũng đã được áp dụng trên động cơ hiện đại: giải pháp hồi lưu khí xả, giải pháp thay đổi thời kỳ trùng điệp của góc độ phối khí. Vì vậy, việc hiểu biết tường tận cơ chế hình thành NOx để tìm biện pháp hạn chế nồng độ của chúng ngay trong quá trình cháy là cần thiết. Mức độ phát sinh ô nhiễm trung bình của quá trình cháy nhiên liệu hydrocarbure như sau: Chất ô nhiễm Lượng phát sinh (g/kg nhiên liệu) NOx 20 CO 200 HC 25 Bồ hóng 2÷5 Đây là số liệu mang tính chất trung bình ở điều kiện cháy của hỗn hợp có hệ số dư lượng không khí a=1. Tuy nhiên trong những điều kiện cháy đặc biệt ở áp suất và nhiệt độ cao với hệ số dư lượng không khí lớn thì tỉ lệ thành phần các chất ô nhiễm cho trong bảng trên đây thay đổi theo hướng gia tăng NOx. 3.2. Tác hại của Oxyde Nitơ 26
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong Oxyde nitơ có thể phát sinh do các quá trình tự nhiên hay do hoạt động công 7 nghiệp. NOx trong khí quyển do các quá trình tự nhiên sinh ra ước chừng 50.10 tấn. Nó 3 phân bố đều trên mặt địa cầu với nồng độ khoảng 2 ÷ 10µg/m , gọi là nồng độ nền. NOx do hoạt động của con người tạo ra, tập trung chính ở vùng thành thị và các khu công nghiệp, chiếm khoảng 1/10 lượng NOx trong tự nhiên hiện nay. 3.2.1. Ảnh hưởng của NOx đến sức khỏe con người NOx có thể đi sâu vào phổi con người do ít hòa tan trong nước. Khi vào được trong phổi, 80% lượng NOx bị giữ lại (đối với SO2, cơ quan này chỉ giữ lại khoảng 5%). Trong các chất của NOx, độc tính của NO2 cao hơn rất nhiều lần so với NO. NOx chủ yếu do quá trình cháy gây ra. Ngoài các quá trình cháy công nghiệp và gia dụng, trong sinh hoạt, con người còn chịu đựng ảnh hưởng trực tiếp của NOx do khói thuốc lá gây ra. Tùy theo loại thuốc lá, khi hút một điếu thuốc người hút đã đưa vào phổi từ 100 đến 600µg NOx, trong đó hơn 5% là NO2. Với thuốc lá nâu thông thường, trung bình mỗi điếu sinh ra 350µg NOx . Nếu người hút thuốc hít 8 lần, mỗi lần 2s với dung tích 35ml và khoảng thời gian giữa hai lần hít là 60s, chúng ta tính được nồng độ NOx trung bình là 933ppm theo thể tích trong toàn bộ khói thuốc. Nhưng mỗi lần hít vào, khói thuốc lá hòa tan vào phổi có thể tích 3500ml, nghĩa là đã làm loãng đi 100 lần, nồng độ NOx trung bình trong phổi khoảng 9,3ppm đối với người chủ động hút thuốc lá. Đối với người thụ động chịu ảnh hưởng của thuốc lá (người hít không khí trong không gian bị ô nhiễm bởi khói thuốc lá) ảnh hưởng này nhỏ nhưng cũng đáng kể. Tính trung bình theo số liệu trên đây thì trong một phòng kín có thể tích 50m3, khi người ta hút một gói 20 điếu thuốc, thì nồng độ NOx trong phòng đạt khoảng 0,1ppm do người hút thải ra. Nếu tính luôn phần khói thuốc thoát ra giữa hai lần hít, người ta ước chừng nồng độ NOx trong phòng gấp 2÷5 lần so với nồng độ trên đây, nghĩa là 0,2 ÷ 0,5ppm. 3.2.2. Ảnh hưởng của NOx đến thực vật NOx chỉ ảnh hưởng đến thực vật khi nồng độ của nó đủ lớn. Người ta thấy ở vùng đô thị hóa cao, nồng độ NOx đạt khoảng 3,93ppm, sự quang hợp của thực vật chỉ giảm đi 25%. Thí nghiệm đặt cây dưa leo trong không khí có nồng độ NOx 0,75ppm trong hai tháng cho thấy không bị ảnh hưởng gì. Những thí nghiệm khác được thực hiện trên cà chua và đậu Hà Lan đặt trong môi trường không khí nhân tạo với nồng độ NOx cao hơn 10 lần so với nồng độ của chúng trong không khí khi bị ô nhiễm nặng nhất cho thấy các loại cây này không bị hư hại gì nhưng nồng độ nitơ tổng cộng trong môi trường gia tăng. Các thí nghiệm trên cây cam trồng trong không gian nhà kính với 4 điều kiện môi trường không khí như sau: a. Không khí nguyên thủy nơi làm thí nghiệm b. Không khí được lọc c. Không khí lọc + NO2 với nồng độ môi trường d. Không khí lọc + 2 lần nồng độ NO2 trong môi trường 27
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong Thí nghiệm được tiến hành bằng cách cân lá rụng và trái cây thu hoạch được trong thời gian cho trước trên một số cành xác định. Người ta thấy rằng lá cây trong điều kiện c có khuynh hướng rụng nhiều hơn cây trong điều kiện b; Lượng lá rụng nhiều nhất trong môi trường không khí d nhưng lượng trái cây thu hoạch được tối ưu nhất trong môi trường c. Những thí nghiệm khác được tiến hành bằng cách đặt cam trong môi trường không khí ô nhiễm nặng hơn, có nồng độ NO2 từ 0,5 đến 1ppm, kéo dài trong 35 ngày cho thấy lá cây bị vàng và rụng nghiêm trọng. Vì vậy thực vật chỉ bị tác hại khi nồng độ NOx đủ lớn và thời gian đủ dài (2÷10ppm; 4÷20µg/m3 trong nhiều ngày). Oxyde nitơ không gây tác hại đến thực vật với nồng độ của chúng hiện nay trong khí quyển. Chỉ có sự tham dự của NOx vào các phản ứng hóa quang mới được xem là nguy hiểm vì NOx tác dụng với một số chất khác có mặt trong không khí trong những điều kiện nhất định tạo ra những chất nguy hiểm đối với thực vật. Chẳng hạn dưới tác dụng của tia cực tím trong môi trường có chứa hydrocarbure, NOx có thể tạo ra những hợp chất nguy hiểm đối với thực vật gấp ngàn lần hơn so với chính bản thân NOx. 3.2.3. Ảnh hưởng đến quang hợp Tỉ lệ gia tăng CO Tỉ lệ gia tăng CO 2 2 100 100 2,5ppm 1,6ppm 80 80 8ppm 3,2ppm 60 60 5,8ppm 9ppm 40 40 Ảnh hưởng Ảnh hưởng Phục hồi Phục hồi 20 20 t(s) t(s) 0 0 Hình 03.1: Ảnh hưở100ng của NO200 đến Hình0 3.2: Ảnh h100ưởng của NO2002 đến quang hợp quang hợp Khi nồng độ NOx lớn hơn 0,5 ÷ 0,7ppm chúng sẽ làm giảm sự quang hợp. Hình 3.1 và 3.2 cho thấy rằng NO và NO2 làm giảm sự quang hợp với nhiều mức độ khác nhau đối với cùng thời gian tác động. Sự giảm quang hợp đạt đến trạng thái cân bằng đối với NO nhanh hơn đối với NO2 và sau khi môi trường hết ô nhiễm, sự quay trở lại trạng thái ban đầu đối với NO nhanh hơn đối với NO2. Trong những vùng đô thị hóa cao (nồng độ NOx đạt khoảng 3,93ppm), sự quang hợp có thể bị giảm đi 25%. 3.3. Cơ chế hình thành Oxyde Nitơ 3.3.1. Cơ chế hình thành monoxyde nitơ Trong họ NOx thì NO chiếm tỉ lệ lớn nhất. NOx chủ yếu do N2 trong không khí nạp 28
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong vào động cơ tạo ra. Nhiên liệu xăng hay Diesel chứa rất ít nitơ nên ảnh hưởng của chúng đến nồng độ NOx không đáng kể. Nhiên liệu nặng sử dụng ở động cơ tàu thủy tốc độ thấp có chứa khoảng vài phần nghìn nitơ (tỉ lệ khối lượng) nên có thể phát sinh một lượng nhỏ NOx trong khí xả. Sự hình thành NO do oxy hóa nitơ trong không khí có thể được mô tả bởi cơ chế Zeldovich. Trong điều kiện hệ số dư lượng không khí xấp xỉ 1, những phản ứng chính tạo thành và phân hủy NO là: → (3.1) ON++2 NON ← NO++ → NOO (3.2) 2 ← NOH++ → NOH (3.3) ← Phản ứng (3.3) xảy ra khi hỗn hợp rất giàu. NO tạo thành trong màng lửa và 1,0 trong sản phẩm cháy phía sau màng lửa. 3000K Trong động cơ, quá trình cháy diễn ra trong X/Xe điều kiện áp suất cao, vùng phản ứng rất mỏng (khoảng 0,1mm) và thời gian cháy rất 2800 2600 ngắn; thêm vào đó, áp suất trong xilanh tăng 0,5 trong quá trình cháy, điều này làm nhiệt độ 2500 của bộ phận khí cháy trước cao hơn nhiệt độ đạt được ngay sau khi ra khỏi khu vực màng lửa nên đại bộ phận NO hình thành trong khu vực sau màng lửa. Hình 3.3: Sự phụ thu10ộc nồng độ NO theo20 nhit(ms)ệt độ Sự hình thành NO phụ thuộc rất mạnh vào nhiệt độ (hình 3.3). Hình 3.4 cho thấy mức độ tiến triển của phản ứng: → (3.4) NO22+ 2 NO ← Phản ứng tạo NO có tốc độ thấp hơn nhiều so với phản ứng cháy. Nồng độ NO cũng phụ thuộc mạnh vào nồng độ oxy. Vì vậy trong điều kiện nhiệt độ cao và nồng độ O2 lớn thì nồng độ NO trong sản phẩm cháy cũng lớn. 3.3.2. Sự hình thành dioxide nitơ NO2/NO(%) Nồng độ NO2 có thể bỏ qua so 30 với NO nếu tính toán theo nhiệt động 1000 2000 học cân bằng trong điều kiện nhiệt độ bình thường của ngọn lửa. Kết quả này 20 có thể áp dụng gần đúng trong trường 2400 hợp động cơ đánh lửa cưỡng bức. Đối với động cơ Diesel, người ta thấy có 10 đến 30% NOx dưới dạng NO2. Dioxyde 2800 nitơ NO2 được hình thành từ monoxyde v/phút nitơ NO và các chất trung gian của sản 0 200 400 pme(kPa) 29 NO++ HO→ NO OH 22←
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong vật cháy theo phản ứng sau: Hình 3.4: Biến thiên tỉ số NO2/NO theo tải của (3.5) động cơ Diesel Trong điều kiện nhiệt độ cao, NO2 tạo thành có thể phân giải theo phản ứng: → (3.6) NO22++ O NO O ← Trong trường hợp NO2 sinh ra trong ngọn lửa bị làm mát ngay bởi môi chất có nhiệt độ thấp thì phản ứng (3.6) bị khống chế, nghĩa là NO2 tiếp tục tồn tại trong sản vật cháy. Vì vậy khi động cơ xăng làm việc kéo dài ở chế độ không tải thì nồng độ NO2 trong khí xả sẽ gia tăng. Tương tự như vậy, khi động cơ Diesel làm việc ở chế độ tải thấp thì phản ứng ngược biến đổi NO2 thành NO cũng bị khống chế bởi các vùng không khí có nhiệt độ thấp. Dioxyde nitơ cũng hình thành trên đường xả khi tốc độ thải thấp và có sự hiện diện của oxy. Hình 3.4 cho thấy biến thiên của tỉ lệ NO2/NOx trên đường xả động cơ Diesel theo chế độ tải. Tỉ lệ này càng cao khi tải càng thấp. NO2 là chất độc khí nhất trong họ NOx vì vậy việc tổ chức tốt quá trình cháy để giảm tốc độ phản ứng tạo thành và tăng tốc độ phản ứng phân giải chất ô nhiễm này có ý nghĩa quan trọng. 3.3.3. Sự hình thành protoxyde nitơ Protoxyde nitơ N2O chủ yếu hình thành từ các chất trung gian NH và NCO khi chúng tác dụng với NO: NH ++ NO → N O H (3.7) ← 2 (3.8) NCO++ NO→ N O CO ← 2 N2O chủ yếu được hình thành ở vùng oxy hóa có nồng độ nguyên tử H cao, mà hydrogène là chất tạo ra sự phân hủy mạnh protoxyde nitơ theo phản ứng: NO++ H→ NH NO (3.9) 2 ← (3.10) NO++ H→ N OH 22← Chính vì vậy N2O chỉ chiếm tỉ lệ rất thấp trong khí xả của động cơ đốt trong (khoảng 3 ÷ 8ppmV). 3.4. Các yếu tố ảnh hưởng đến sự hình thành Oxyde Nitơ 3.4.1. Trường hợp động cơ đánh lửa cưỡng bức Những yếu tố quan trọng nhất ảnh hưởng đến sự hình thành NO là hệ số dư lượng không khí của hỗn hợp, hệ số khí sót và góc đánh lửa sớm. Ảnh hưởng của tính chất nhiên liệu đến nồng độ NO có thể bỏ qua so với ảnh hưởng của các yếu tố này. 30
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong 1. Ảnh hưởng của hệ số dư lượng không khí Hình 3.5 minh họa ảnh hưởng của hệ số 4000 dư lượng không khí đến mức độ phát sinh NO. NO(ppm) Nhiệt độ cháy đạt giá trị cực đại tương ứng với hệ số dư lượng không khí khoảng 0,9, nghĩa là khi hỗn hợp hơi giàu. Tuy nhiên trong điều 3000 kiện đó nồng độ O2 thấp nên nồng độ NO không đạt giá trị lớn nhất. Khi hệ số dư lượng không khí tăng, ảnh hưởng của sự gia tăng áp 2000 suất riêng O2 đến nồng độ NO lớn hơn ảnh hưởng của sự giảm nhiệt độ cháy nên NO đạt giá trị cực đại ứng với hệ số dư lượng không 1000 khí khoảng 1,1 (hỗn hợp hơi nghèo). Nếu độ đậm đặc của hỗn hợp tiếp tục giảm thì tốc độ của phản ứng tạo thành NO cũng giảm do nhiệt độ cháy thấp. Điều ấy giải thích sự giảm nồng Hình 3.5:0,8 Biến thiên1,0 nồng1,2 độ NO 1,4theoa Hệ số dư lượng không khí độ NOx khi tăng hệ số dư lượng không khí. 2. Ảnh hưởng của hệ số khí sót Trước khi cháy, hỗn hợp trong xi lanh bao gồm không khí, hơi nhiên liệu và khí sót. Khí sót có mặt trong hỗn hợp là do khí cháy của chu trình trước còn sót lại trong xy lanh hay do hồi lưu khí xả. Khi không có sự hồi lưu, lượng khí sót trong xi lanh phụ thuộc vào tải, góc độ phối khí và đặc biệt là khoảng trùng điệp giữa các soupape thải và nạp. Khi khoảng trùng điệp tăng thì lượng khí sót tăng làm giảm nồng độ NO. Mặt khác, lượng khí sót còn phụ thuộc vào chế độ động cơ, độ đậm đặc của hỗn hợp và tỉ số nén. Khí sót giữ vai trò làm bẩn hỗn hợp, do đó làm giảm nhiệt độ cháy dẫn đến sự giảm nồng độ NOx. Tuy nhiên, khi hệ số khí sót gia tăng quá lớn, động cơ sẽ làm việc không ổn định làm giảm tính kinh tế và tăng nồng độ HC. Hình 3.6 trình bày ảnh hưởng của tỉ lệ khí xả hồi lưu đến nồng độ NO ứng với các độ đậm đặc khác nhau của hỗn hợp. Nồng độ các chất ô nhiễm giảm mạnh theo sự gia tăng của tỉ lệ khí xả hồi lưu cho đến khi tỉ lệ này đạt 15 ÷ 20%, đây là tỉ lệ khí sót lớn nhất chấp nhận được đối với động cơ làm việc ở tải cục bộ. Nhiệt độ cháy giảm khi gia tăng lượng khí sót trong hỗn hợp là do sự gia tăng của nhiệt dung riêng môi chất. NO(ppm) 3000 NO(ppm) 3000 16 16 2000 2000 A/F=15 A/F=15 1000 1000 17 17 31 10 20 50 40 30 20 10 0 EGR(%) Góc đánh lửa sớm
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong Hình 3.6: Ảnh hưởng của tỉ lệ khí xả Hình 3.7: Ảnh hưởng của góc đánh lửa sớm hồi lưu đến nồng độ NO đến nồng độ NO Sự gia tăng tỉ lệ khí sót vượt quá giới hạn cho phép làm giảm chất lượng quá trình cháy dẫn đến sự cháy không hoàn toàn và động cơ làm việc không ổn định do bỏ lửa. Vì vậy, luợng khí sót tối ưu cần phải cân nhắc giữa sự giảm nồng độ NO và sự gia tăng suất tiêu hao nhiên liệu. Điều này chỉ có thể thực hiện một cách tự động nhờ hệ thống điều khiển điện tử cho phép điều khiển lượng khí xả hồi lưu tối ưu ứng với mỗi chế độ vận hành của động cơ. 3. Ảnh hưởng của góc đánh lửa sớm Góc đánh lửa sớm có ảnh hưởng mạnh đến sự phát sinh NO (hình 3.7). Khi tăng góc đánh lửa sớm, điểm bắt đầu cháy xuất hiện sớm hơn trong chu trình công tác, áp suất cực đại xuất hiện gần ĐCT hơn do đó giá trị của nó cao hơn. Vì vậy, tăng góc đánh lửa sớm cũng làm tăng nhiệt độ cực đại. Mặt khác, vì thời điểm cháy bắt đầu sớm hơn nên thời gian tồn tại của khí cháy ở nhiệt độ cao cũng kéo dài. Hai yếu tố này đều tạo điều kiện thuận lợi cho sự hình thành NO. Tóm lại, tăng góc đánh lửa sớm làm tăng nồng độ NO trong khí xả. Trong điều kiện vận hành bình thường của động cơ, giảm góc đánh lửa 10 độ có thể làm giảm nồng độ NO từ 20 ÷ 30% ở cùng áp suất cực đại của động cơ. 3.4.2. Trường hợp động cơ Diesel Khác với động cơ đánh lửa cưỡng bức, do đặc điểm của quá trình tạo hỗn hợp không đồng nhất, quá trình cháy trong động cơ Diesel gồm hai giai đoạn: giai đoạn cháy đồng nhất diễn ra ngay sau kì cháy trễ và giai đoạn cháy khuếch tán. Sự phân bố nhiệt độ và thành phần khí cháy trong không gian buồng cháy là không đồng nhất. Đối với quá trình cháy hòa trộn trước, thành phần hỗn hợp có thể thay đổi trong phạm vi rộng; trong khi đó, đối với quá trình cháy khuếch tán, màng lửa xuất hiện ở những khu vực cục bộ có thành phần hỗn hợp gần với giá trị cháy hoàn toàn lí thuyết. Cũng như trường hợp động cơ đánh lửa cưỡng bức, nhiệt độ cực đại là yếu tố ảnh hưởng lớn đến sự hình thành NO trong quá trình cháy của động cơ Diesel. Trong mọi loại động cơ, sản phẩm cháy của bộ phận nhiên liệu cháy trước tiên trong chu trình đóng vai trò quan trọng nhất đối với sự hình thành NO vì sau khi hình thành, bộ phận sản phẩm cháy đó bị nén làm nhiệt độ gia tăng do đó làm tăng nồng độ NO. Mặt khác, do quá trình cháy khuếch tán, trong buồng cháy động cơ Diesel luôn tồn tại những khu vực hay các ‘túi’ không khí có nhiệt độ thấp. Nhờ bộ phận không khí này mà NO hình thành trong buồng cháy động cơ Diesel được làm mát (gọi là sự ‘tôi’ NO) nhanh chóng hơn trong trương hợp động cơ đánh lửa cưỡng bức và do đó NO ít có khuynh 32
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong hướng bị phân giải hơn. Các quan sát thực nghiệm cho thấy hầu hết NO được hình thành trong khoảng 200 góc quay trục khuỷu từ lúc bắt đầu cháy. Do đó, khi giảm góc phun sớm, điểm bắt đầu cháy lùi gần ĐCT hơn, điều kiện hình thành NO cũng bắt đầu trễ hơn và nồng độ của nó giảm do nhiệt độ cực đại thấp. Đối với động cơ Diesel cỡ lớn, giảm góc phun sớm có thể làm giảm đến 50% nồng độ NO trong khí xả trong phạm vi gia tăng suất tiêu hao nhiên liệu chấp nhận được. Đối với động cơ Diesel nói chung, nồng độ NOx tăng theo độ đậm đặc trung bình (hình 3.8). Tuy nhiên nồng độ NOx giảm theo độ đậm đặc chậm hơn trong trường hợp động cơ đánh lửa cưỡng bức do sự phân bố không đồng nhất của nhiên liệu. Trong quá trình cháy của động cơ Diesel, độ đậm đặc trung bình phụ thuộc trực tiếp vào lượng nhiên liệu chu trình. Do đó, ở chế độ tải lớn nghĩa là áp suất cực đại cao, nồng độ NO tăng. Ở động cơ Diesel phun gián tiếp, một bộ phận nhỏ NO hình thành trong buồng cháy NO,NOx(ppm) chính (khoảng 35%) còn phần lớn được hình 4000 NOx thành trong buồng cháy dự bị (khoảng 65%). Quá trình cháy trong buồng cháy phụ nói NO chung diễn ra trong điều kiện độ đậm đặc 3000 trung bình rất lớn, trừ trường hợp tải thấp, do đó nồng độ NO trong buồng cháy này cao. 2000 Thời gian dành cho sự phân giải NO trong hỗn hợp đậm đặc của buồng cháy dự bị rút ngắn vì ngay sau khi hình thành, nó được 1000 chuyển sang buồng cháy chính và ở đó, các phản ứng phân giải NO bị khống chế vì chúng f được hòa trộn với không khí có nhiệt độ thấp. Hình 3.8:0,3 Ảnh0,4 hưởng0,5 độ đă0,6m đặ0,7c trung0,8 bình đến nồng độ NOx trong động cơ Diesel Hình 3.8 trình bày biến thiên của nồng độ NOx và NO trong khí xả theo độ đậm đặc trung bình đối với động cơ Diesel phun trực tiếp, tốc độ 1000v/phút và góc phun sớm 270 trước ĐTC. Cũng như trong trường hợp động cơ đánh lửa cưỡng bức, sự hồi lưu khí xả làm giảm NO do làm giảm nhiệt độ khí cháy. Tuy nhiên, ở động cơ Diesel ảnh hưởng của khí xả hồi lưu đến NO phụ thuộc mạnh vào chế độ tải. Ở chế độ tải cao, khí thải chứa nhiều CO2 và hơi nước, hỗn hợp có nhiệt dung riêng lớn, còn ở chế độ tải thấp, khí hồi lưu chủ yếu là nitơ có nhiệt dung riêng bé. Ở động cơ Diesel tăng áp, sự gia tăng áp suất dẫn đến sự gia tăng nhiệt độ khí cháy, do đó làm tăng nồng độ NO. 3.5. Ví dụ tính toán nồng độ NOx trong khí xả động cơ Diesel 3.5.1. Giới thiệu 33
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong Trởn ợờy chóng ta ợỈ ợồ cẹp ợỏn cĨc phộn ụng hÈnh thÌnh NOx. KhĨc víi phđn lín cĨc chÊt khĨc cã mật trong sộn phẻm chĨy, nạng ợé NOx ợỨîc khèng chỏ bẽi ợéng hảc phộn ụng vÈ thêi gian chóng ợÓt ợiồu kiơn cờn bững nhiơt ợéng hảc xÊp xừ thêi gian chĨy. ớèi víi quĨ trÈnh chĨy trong ợéng cŨ, cĨc nhÌ nghiởn cụu ợỈ ợỨa ra nhƠng hơ phỨŨng trÈnh ợéng hảc phộn ụng khĨc nhau ợố mỡ tộ sù hÈnh thÌnh NOx nhỨ mỡ hÈnh Newhall, Annand, Zeldovich. CĨc yỏu tè cŨ bộn ợố tÝnh toĨn nạng ợé NOx theo cĨc mỡ hÈnh nÌy lÌ nạng ợé côc bé cĐa oxy, nhiởn liơu vÌ nhiơt ợé chĨy. Mỡ hÈnh ợố xĨc ợẺnh cĨc thỡng sè nÌy trong quĨ trÈnh chĨy cĐa ợéng cŨ Diesel ợỈ lÌ ợồ tÌi bÌn cỈi cĐa cĨc nhÌ khoa hảc tõ nhiồu thẹp kủ qua. Tõ lờu, mỡ hÈnh mét khu vùc ợỨîc sö dông nhỨ mét phỨŨng tiơn ợố tÝnh toĨn quĨ trÈnh chĨy ợéng cŨ Diesel. Mỡ hÈnh nÌy giộ ợẺnh hçn hîp trong buạng chĨy lÌ ợạng nhÊt, bá qua ộnh hỨẽng cĐa cĨc hiơn tỨîng lỶ hoĨ vÌ sù khuỏch tĨn nhiởn liơu - khỡng khÝ trong ngản löa. Mỡ hÈnh ợã râ rÌng khỡng cho phƯp xĨc ợẺnh ợỨîc nạng ợé NOx. Mỡ hÈnh ợa khu vùc ợỨîc thiỏt lẹp nhữm khÕc phôc nhỨîc ợiốm trởn. Tuy ợỨîc ghi nhẹn lÌ bỨíc tiỏn ợĨng kố, nhỨng mỡ hÈnh nÌy tạn tÓi mét nhỨîc ợiốm cŨ bộn ợã lÌ tèc ợé tiởu thô nhiởn liơu ợỨîc xĨc ợẺnh dùa trởn nhƠng biốu thục thùc nghiơm, do ợã khã cã thố khĨi quĨt hoĨ cho cĨc trỨêng hîp khĨc nhau cĐa ợéng cŨ Diesel. Mỡ hÈnh ngản löa khuỏch tĨn lÌ mỡ hÈnh ợa khu vùc ợỨîc thiỏt lẹp trong thêi gian gđn ợờy ợố tÝnh toĨn quĨ trÈnh chĨy cĐa ợéng cŨ Diesel. Tèc ợé tiởu thô nhiởn liơu ợỨîc xĨc ợẺnh dùa trởn cŨ sẽ cờn bững vẹt chÊt trong ngản löa rèi. Mỡ hÈnh nÌy ợỈ mẽ ra triốn vảng trong tÝnh toĨn nạng ợé cĨc chÊt ỡ nhiÔm cĐa quĨ trÈnh chĨy ợéng cŨ Diesel, ợậc biơt lÌ bạ hãng vÌ NOx. Phđn sau ợờy sỹ giíi thiơu mét vÝ dô vồ tÝnh toĨn sù hÈnh thÌnh NOx trong ợéng cŨ Diesel phun giĨn tiỏp bững mỡ hÈnh khuỏch tĨn. 3.5.2. Mỡ hÈnh tÓo NOx Trong trỨêng hîp ợđy ợĐ cã thố xem trong sộn vẹt chĨy cĐa khỡng khÝ vÌ nhiởn liơu hydrocarbure cã 12 chÊt: H2O, H2, OH, H, N2, NO, N, CO2, CO, O2, O, Ar. Phộn ụng hãa hảc trong trỨêng hîp tăng quĨt ợỨîc viỏt dỨíi dÓng: ⎛ mr⎞⎛ 78 1 ⎞ q aCH().nmr O++−α a⎜ n ⎟⎜ONArx22++⎟ → ∑ i (3.11) ⎝ ⎠⎝ ⎠ i=1 42 21 21 Trong ợã q lÌ tăng sè cĨc thÌnh phđn sộn vẹt chĨy vÌ xi lÌ thÌnh phđn mol cĐa chÊt i trong sộn vẹt chĨy. Phđn lín cĨc chÊt cã mật trong sộn phẻm chĨy cã thố xem ẽ trÓng thĨi cờn bững 34
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong nhiơt ợéng hảc trõ NOx, chÊt cã nạng ợé thay ợăi theo thêi gian. Trong phđn trởn chóng ta giíi thiơu hơ phỨŨng trÈnh Zeldovich. Trong vÝ dô nÌy chóng ta sö dông hơ phỨŨng trÈnh ợđy ợĐ hŨn cĐa ANNAND. Theo ANNAND, hơ cĨc phỨŨng trÈnh ợéng hảc phộn ụng khèng chỏ sù hÈnh thÌnh NOx bao gạm 7 phỨŨng trÈnh thuẹn nghẺch sau ợờy: ⎛ −160⎞ NNO++⎯→⎯ N O , k = 3110,.10 .exp⎜ ⎟ (3.12) ←⎯⎯ 2 f1 ⎝ T ⎠ ⎛ − 3125⎞ N++ O⎯→⎯ NO O , kT= 6410, .6 . .exp⎜ ⎟ (3.13) 2 ←⎯⎯ f2 ⎝ T ⎠ ⎯→⎯ 10 NOH++←⎯⎯ NOH , k f3 = 4210,. (3.14) ⎯→⎯ 10 HNO++22←⎯⎯ N OH, kTf4 =−310. .exp( 5350 .) (3.15) ⎛ −18900⎞ ONO++⎯→⎯ N O, k = 3210,.12 .exp⎜ ⎟ (3.16) 222←⎯⎯ f5 ⎝ T ⎠ ⎯→⎯ ONO++2 ←⎯⎯ NONO, kkff65= (3.17) ⎛ − 30500⎞ NO+++ M⎯→⎯ N O M, k = 1012 .exp⎜ ⎟ (3.18) 22←⎯⎯ f7 ⎝ T ⎠ Tèc ợé tÓo thÌnh NO khi tÝnh theo gãc quay trôc khuủu viỏt dỨíi dÓng sau: ⎛ ⎞ ⎜ ⎟ dNO()[] V R R V =−()1 θ 2 ⎜ 1 + 6 ⎟ (3.19) dα 30.n ⎜ R 1 R 6 ⎟ ⎜11+ θ + ⎟ ⎝ RR23+ RRR457++⎠ Trong ợã:V: Thố tÝch cĐa phđn sộn phẻm chĨy (cm3); n: Sè vßng quay ợéng cŨ n (v/ph); α: Gãc quay trôc khuủu (ợé); Ri = k fi ∏[;X j ]e kfi: lÌ hững sè tèc ợé phộn ụng j=1 thuẹn thụ i. (i=1÷7); [Xj]e: nạng ợé ẽ trÓng thĨi cờn bững nhiơt ợéng cĐa chÊt tham gia 3 phộn ụng j trong phộn ụng thuẹn thụ i (mol/cm ); θ= [NO]pỨ/[NO]e. 3.5.3. Mỡ hÈnh chĨy khuỏch tĨn trong ợéng cŨ Diesel phun giĨn tiỏp Trong giai ợoÓn chĨy khuỏch tĨn khỡng gian cĨc buạng chĨy cĐa ợéng cŨ Diesel PGT ợỨîc chia thÌnh bèn khu vùc nhỨ hÈnh 3.9 vÌ 3.10. Sau giai ợoÓn chĨy nhanh, nhiởn liơu ợỨîc tiỏp tôc phun vÌo, khỡng khÝ cßn lÓi trong buạng chĨy phô khuỏch tĨn vÌo tia phun vÌ chĨy khuỏch tĨn (khu vùc 1). ớé ợẹm ợậc trung bÈnh trong khu vùc 1 tÙng dđn vÌ quĨ trÈnh chĨy tÓi ợờy kỏt thóc khi ợé ợẹm ợậc trung bÈnh lín hŨn giĨ trẺ giíi hÓn trởn cĐa φ. Khu vùc nÌy bao gạm nhiởn liơu chỨa chĨy, sộn phẻm chĨy. ẽ khu vùc 2, ban 35
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong ợđu lÌ khỡng khÝ, thố tÝch khu vùc nÌy thu hỦp dđn vÌ cuèi cĩng lÌ sộn phẻm chĨy chiỏm chç. Khu vùc 3 lÌ chĨy trong buạng chĨy chÝnh. ớđu tiởn nã bao gạm nhiởn liơu chỨa chĨy hỏt, sộn phẻm chĨy khỡng hoÌn toÌn. Oxy trong buạng chĨy chÝnh khuỏch tĨn vÌo khu vùc 3 (ợỨîc xem nhỨ mét ngản löa khuỏch tĨn míi). ớé ợẹm ợậc trung bÈnh cĐa khu vùc nÌy giộm dđn vÌ quĨ trÈnh chĨy kỏt thóc khi toÌn bé lỨîng nhiởn liơu phun vÌo ợỈ tiởu thô hỏt. Khu vùc 4, chụa khỡng khÝ, thố tÝch khu vùc nÌy giộm dđn vÌ ợỏn cuèi quĨ trÈnh chĨy nã bẺ sộn phẻm chĨy chiỏm chç hoÌn toÌn. Tia phun Buạng chĨy phô d c Buạng chĨy c chÝnh d f e f e Piston HÈnh 3.9: SŨ ợạ phờn chia khu vùc giai ợoÓn chĨy HÈnh 3.10: Mỡ hÈnh cĨc vĩng phộn ụng trong khuỏch tĨn trong buạng chĨy chÝnh vÌ phô ợéng cŨ phun giĨn tiỏp NhỨ vẹy cã thố xem quĨ trÈnh chĨy khuỏch tĨn trong ợéng cŨ Diesel phun giĨn tiỏp gạm hai ngản löa khuỏch tĨn: Ngản löa thụ nhÊt chĨy trong buạng chĨy phô, cã ợậc ợiốm lÌ tÓi miơng vßi phun chừ cã nhiởn liơu, ngản löa thụ hai chĨy trong buạng chĨy chÝnh tèc ợé phun thÊp hŨn, ợỨêng kÝnh lç phun lín hŨn (chÝnh lÌ ợỨêng kÝnh hảng thỡng) vÌ tÓi miơng hảng thỡng lÌ hçn hîp gạm nhiởn liơu vÌ sộn phẻm chĨy. Hơ phỨŨng trÈnh cđn giội ụng víi 6 ẻn sè lÌ nhiơt ợé khÝ tÓi cĨc vĩng 1, 2, 3, 4, Ĩp suÊt trong buạng chĨy p vÌ nạng ợé NOx. Hơ phỨŨng trÈnh nÌy ợỨîc thiỏt lẹp dùa trởn ợẺnh luẹt nhiơt ợéng hảc thụ nhÊt, phỨŨng trÈnh trÓng thĨi khÝ lỶ tỨẽng vÌ phỨŨng trÈnh (3.19). 3.5.4. Kỏt quộ Hơ phỨŨng trÈnh trởn ợỨîc Ĩp dông ợố tÝnh toĨn quĨ trÈnh chĨy vÌ sù hÈnh thÌnh NOx trong ợéng cŨ KUBOTA. So sĨnh kỏt quộ tÝnh toĨn NOx víi kỏt quộ thùc nghiơm ẽ cĨc gãc phun sím khĨc nhau ợỨîc trÈnh bÌy trởn hÈnh 3.11. Kỏt quộ tÝnh toĨn rÊt phĩ hîp víi thùc nghiơm. Khi tÙng gãc phun sím dÉn ợỏn thêi ợiốm bÕt ợđu chĨy diÔn ra sím 36
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong hŨn do ợã lÌm tÙng giĨ trẺ Ĩp suÊt cùc ợÓi, nhiơt ợé cùc ợÓi cao hŨn vÈ vẹy nạng ợé NOx sinh ra lín hŨn. So sĨnh kỏt quộ tÝnh toĨn NOx víi kỏt quộ thùc nghiơm ẽ cĨc sè vßng quay khĨc nhau trÈnh bÌy trởn hÈnh 3.12. CÌng tÙng sè vßng quay tèc ợé vẹn ợéng rèi cĐa khỡng khÝ trong buạng chĨy cÌng tÙng, lÌm tÙng tèc ợé chĨy do ợã NOx tÙng lởn. Sù sai lơch giƠa tÝnh toĨn lỶ thuyỏt víi thùc nghiơm cã thố do viơc giộn hãa trong giộ thiỏt tÝnh toĨn khi dĩng mỡ hÈnh rèi k-ε-g ợậc trỨng cho vẹn ợéng rèi cĐa mỡi chÊt trong buạng chĨy. So sĨnh kỏt quộ tÝnh toĨn NOx víi kỏt quộ thùc nghiơm theo ợé ợẹm ợậc trung bÈnh cĐa hçn hîp ẽ cĨc sè vßng quay 1200 vßng/phót vÌ 2200 vßng/phót trÈnh bÌy trởn hÈnh 3.13 vÌ 3.14. Sù phĩ hîp giƠa tÝnh toĨn vÌ thùc nghiơm cho thÊy cã thố dĩng hơ phỨŨng trÈnh ợéng hảc phộn ụng cĐa Annand ợố tÝnh toĨn sù hÈnh thÌnh NOx trong khÝ xộ ợéng cŨ Diesel. NOx Tênh toaïn NOx Tênh toaïn 50 NOx Thê nghiãûm 45 NOx Thê nghiãûm 80 40 70 (ppm) x 35 60 (ppm) x 50 30 40 ü NO 25 30 20 Nång ®é NO 20 ö ng âä 10 15 Nä 0 1000 1200 1400 1600 1800 2000 2200 16.5 18 19.5 21 22.5 24 Säú voìng quay (v/ph) Goïc phun såïm (âäü) HÈnh 3.11: So sĨnh kỏt quộ tÝnh toĨn vÌ thÝ HÈnh 3.12: So sĨnh kỏt quộ tÝnh toĨn vÌ thÝ nghiơm nghiơm NOx cĐa ợéng cŨ KUBOTA theo gãc nạng ợé NOx cĐa ợéng cŨ KUBOTA theo sè vßng quay, phun sím, lỨîng nhiởn liơu cung cÊp chu trÈnh lỨîng nhiởn liơu cung cÊp chu trÈnh Qct=0.03g/ct; gãc Qct= 0.037g/ct phun sím 21o 37
- Chương 3: Cơ chế hình thành NOx trong quá trình cháy của động cơ đốt trong 50 NOx Tinh to¸n(ppm) NOx Tênh toaïn(ppm) NOx Thi nghiÖm (ppm) 60 NOx Thê nghiãûm(ppm) 40 50 (ppm) x 30 (ppm) 40 x 20 30 10 20 Nång ®é NO 10 0 Nång ®é NO 0 11.11.21.31.4 1 1.1 1.2 1.3 1.4 HÖ sè d− l−îng kh«ng khÝ HÖ sè d− l−îng kh«ng khÝ HÈnh 3.13: Kỏt quộ tÝnh toĨn vÌ thÝ nghiơm nạng ợé HÈnh 3.14: Kỏt quộ tÝnh toĨn vÌ thÝ nghiơm nạng ợé NOx cĐa ợéng cŨ KUBOTA theo hơ sè dỨ lỨîng NOx cĐa ợéng cŨ KUBOTA theo hơ sè dỨ lỨîng khỡng khÝ khi n= 1200v/ph khỡng khÝ trung bÈnh khi n= 2200v/ph 38
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong 4.2.5. Ảnh hưởng của hệ số khí sót Hình 4.10 trình bày ảnh hưởng của hệ số khí sót xb đến nồng độ CO trong khí xả động cơ Toyota. Khi tăng hệ số khí sót, nhiệt độ cháy giảm làm giảm tốc độ phản ứng phân giải CO2 thành CO do đó nồng độ CO trong sản phẩm cháy giảm. Vì vậy, hệ thống hồi lưu khí xả EGR lắp trên các động cơ hiện đại để khống chế nồng độ NOx đồng thời cũng góp phần làm giảm nồng độ CO ở chế độ tải thấp. 4.3. Cơ chế hình thành hydrocarbure chưa cháy HC 4.3.1. Sự phát sinh hydrocarbure chưa cháy trong khí xả động đốt trong Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết, nghĩa là ở khu vực có nhiệt độ thấp, khác với sự hình thành CO và NOx diễn ra trong pha đồng nhất ở những khu vực có nhiệt độ cao. Đánh lửa Đóng soupape xả Mở soupape xả 104 Nồng độ trong 103 khí xả C3H8 2 10 C2H4 10 CH4 1 0 100 200 300 400 Độ góc quay trục khuỷu sau ĐCT Hình 4.11: Biến thiên nồng độ một số hydrocarbure theo góc quay trục khuỷu HC bao gồm các thành phần hydrocarbure rất khác biệt, có độc tính khác nhau đối với sức khỏe con người cũng như có tính phản ứng khác nhau trong quá trình biến đổi hóa học trong bầu khí quyển. Thông thường HC chứa một bộ phận lớn méthane. Thêm vào đó, chúng còn có các thành phần chứa oxygène có tính phản ứng cao hơn như aldehyde, cetone, phenol, alcool Nếu thành phần chứa carbon chỉ chiếm vài phần trăm trong HC của động cơ đánh lửa cưỡng bức thì aldehyde có thể đạt đến 10% trong HC động cơ Diesel và trong số aldehyde này, formaldehyde chiếm tới 20% tổng số thành phần chứa carbon. 46
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong Những chất còn lại trong hỗn hợp sau khi màng lửa đi qua không phải là nguồn phát sinh HC chính đo được trên đường xả của động cơ đốt trong. Hình 4.11 biểu diễn sự biến thiên nồng độ các thành phần hydrocarbure theo góc quay trục khuỷu đo được trên thành buồng cháy của động cơ một cylindre. Chúng ta thấy rằng, ngay khi màng lửa đi qua, nồng độ HC đo được thấp hơn HC có mặt trong khí xả. Vào cuối chu trình, nồng độ HC lại tăng lên. Thật vậy, khi màng lửa đã lan đến khu vực gần thành thì nó bị dập tắt và chính HC thoát ra từ các vùng không bị cháy đóng vai trò chủ yếu trong việc làm tăng nồng độ HC. 4.3.2. Cơ chế tôi màng lửa Tôi màng lửa hay sự dập tắt màng lửa diễn ra khi nó tiếp xúc với thành buồng cháy. Quá trình tôi màng lửa có thể xảy ra trong những điều kiện khác nhau: màng lửa bị làm lạnh khi tiếp xúc với thành trong quá trình dịch chuyển hoặc màng lửa bị dập tắt trong những không gian nhỏ liên thông với buồng cháy, chẳng hạn như khe hở giữa piston và thành cylindre (hình 4.12). Hỗn hợp Vùng chưa cháy màng lửa bị kẹt Sản phẩm cháy Hình 4.12: Sự hình thành HC do tôi màng lửa trên thành buồng cháy Khi màng lửa bị tôi, nó giải phóng một lớp mỏng hỗn hợp chưa cháy hay cháy không hoàn toàn trên các bề mặt tiếp xúc (culasse, piston, cylindre, soupape ) hay ở những không gian chết. Bề dày của vùng bị tôi phụ thuộc vào những yếu tố khác nhau: nhiệt độ và áp suất của hỗn hợp khí, tốc độ lan tràn màng lửa, hệ số dẫn nhiệt, nhiệt dung riêng, tình trạng bề mặt của thành buồng cháy, lớp muội than, nhiệt độ thành buồng cháy Người ta có thể sử dụng những công thức thực nghiệm để tính kích thước bé nhất của không gian chết để màng lửa có thể đi qua mà không bị dập tắt. Quá trình tôi màng lửa diễn ra theo hai giai đoạn: trong giai đoạn đầu, màng lửa bị tắt khi nhiệt lượng hấp thụ vào thành buồng cháy cân bằng với nhiệt lượng do màng lửa tỏa ra. Vài giây sau khi tôi, do diễn ra sự khuếch tán hay sự oxy hóa nên nồng độ HC tại khu vực này nhỏ hơn nồng độ đo được khi tôi. Mặt khác, những hydrocarbure thoát ra trong quá trình oxy hóa ban đầu do màng lửa bị dập tắt có thể bị oxy hóa trong quá trình 47
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong giãn nở hay thải. Cuối cùng lớp dầu bôi trơn trên mặt gương cylindre có thể hấp thụ hydrocarbure, nhất là các hydrocarbure trước khi bén lửa và thải HC ra hỗn hợp cháy trong kì giãn nở. Quá trình hấp thụ và thải HC như vừa nêu đôi khi là nguồn phát sinh HC quan trọng trong khí xả động cơ đốt trong. 4.4. Sự phát sinh HC trong quá trình cháy của động cơ đánh lửa cưỡng bức Khí xả động cơ xăng thường có chứa từ 1000 đến 3000ppmC, tương ứng với khoảng từ 1 đến 2,5% lượng nhiên liệu cung cấp cho động cơ. Như đã trình bày trên hình 1.1, nồng độ HC tăng nhanh theo độ đậm đặc của hỗn hợp. Tuy nhiên, khi độ đậm đặc của hỗn hợp quá thấp, HC cũng tăng do sự bỏ lửa hay do sự cháy không hoàn toàn diễn ra ở một số chu trình công tác. Sự hình thành HC trong động cơ đánh lửa cưỡng bức có thể được giải thích theo các cơ chế sau đây (hình 4.13): - Sự tôi màng lửa khi tiếp xúc với thành tạo ra một lớp hỗn hợp không bị bén lửa trên mặt thành buồng cháy. - Hỗn hợp chứa trong các không gian chết không cháy được do màng lửa bị dập tắt. - Hơi nhiên liệu hấp thụ vào lớp dầu bôi trơn trên mặt gương cylindre trong giai đoạn nạp và nén và thải ra trong giai đoạn giãn nở và cháy. - Sự cháy không hoàn toàn diễn ra ở một số chu trình làm việc của động cơ (cháy cục bộ hay bỏ lửa) do sự thay đổi độ đậm đặc, thay đổi góc đánh lửa sớm hay hồi lưu khí xả, đặc biệt khi gia giảm tốc độ. Mặt khác, muội than trong buồng cháy cũng có thể gây ra sự gia tăng mức độ phát sinh ô nhiễm do sự thay đổi các cơ chế trên đây. Tất cả những quá trình này (trừ trường hợp bỏ lửa) làm gia tăng nồng độ HC chưa cháy ở gần thành buồng cháy chứ không phải trong toàn bộ thể tích buồng cháy. Trong quá trình thải có thể xuất hiện hai đỉnh cực đại của nồng độ HC: đỉnh thứ nhất tương ứng với đại bộ phận HC sinh ra trong quá trình cháy chính, đỉnh thứ hai xuất hiện vào cuối kì thải ở thời điểm những bộ phận HC cuối cùng thoát ra khỏi cylindre trong điều kiện lưu lượng khí xả đã giảm. Lớp dầu bôi Lớp muội than trơn hấp thụ hấp thụ HC HC Màng lửa Hỗn hợp cháy không hoàn toàn là nguồn Hỗn hợp chưa phát sinh HC cháy bị nén vào không gian chết CHÁY NÉN 48 Lớp muội than HC trên thành giải phóng HC cylindre bị kéo theo dòng khí xả
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong Hình 4.13: Sơ đồ các nguồn phát sinh HC 4.4.1. Tôi màng lửa trên thành buồng cháy Bề dày của lớp bị tôi thay đổi từ 0,05 đến 0,4mm phụ thuộc vào chế độ tải của động cơ. Khi tải càng thấp thì lớp bị tôi càng dày. Sự hiện diện của aldehyde dạng HCHO hay CH3CHO trong lớp tôi chứng tỏ rằng khu vực lớp tôi là nơi diễn ra các phản ứng oxy hóa ở nhiệt độ thấp. Sau khi màng lửa bị dập tắt, những phần tử HC có mặt trong lớp tôi khuếch tán vào khối khí nhiệt độ cao trong buồng cháy và đại bộ phận bị oxy hóa. Trạng thái bề mặt của thành buồng cháy cũng ảnh hưởng đến mức độ phát sinh HC: nồng độ HC có thể giảm đi 14% trong trường hợp thành buồng cháy được đánh bóng so với trường hợp thành buồng cháy ở dạng đúc thô. Lớp muội than gây ảnh hưởng đến nồng độ HC tương tự như trường hợp thành buồng cháy nhám. 4.4.2. Ảnh hưởng của các không gian chết Các không gian này được xem là nguyên nhân chủ yếu phát sinh HC. Các không gian chết quan trọng nhất là các khe hở giới hạn giữa piston, segment và cylindre (hình 4.15). Những không gian chết khác bao gồm chân ren và không gian quanh cực trung tâm của bougie, không gian quanh nấm và đế soupape, không gian giới hạn giữa nắp cylindre, thân máy và đệm culasse. Ở thời điểm gia tăng áp suất trong quá trình nén, hỗn hợp nhiên liệu-không khí bị đẩy vào các không gian chết. Do tỉ số giữa diện tích bề mặt và thể tích của các không gian chết lớn nên lượng khí dồn vào đây được làm mát nhanh chóng. Trong giai đoạn cháy, áp suất tiếp tục tăng và một bộ phận hỗn hợp mới lại được nén vào không gian chết. Khi màng lửa lan đến các khu vực này, nó có thể lan tràn vào bên trong để đốt cháy hỗn hợp này hoặc nó bị tôi ngay trước khi vào trong không gian chết. Khả năng màng lửa bị tôi phụ thuộc vào dạng hình học của lối vào không gian chết, thành phần của hỗn hợp chưa cháy và trạng thái nhiệt động học của nó. Thực nghiệm cho thấy sự tôi màng lửa diễn ra khi khe hở giữa piston và cylindre nhỏ hơn 0,18mm. Sau khi màng lửa đến và 49
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong bị tôi, khí cháy lại chui vào không gian chết cho đến khi áp suất bắt đầu giảm. Khi áp suất trong không gian chết trở nên lớn hơn áp suất trong cylindre, bộ phận khí chứa trong các không gian này quay trở ngược lại cylindre. Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm giữa piston, segment và thành cylindre. Nó bao gồm một loạt các thể tích nối liền nhau bởi những khe hẹp như khe hở segment, không gian giới hạn giữa hai segment liên tiếp Dạng hình học của các không gian chết này thay đổi khi segment dịch chuyển trong rãnh để che kín mặt trên hay mặt dưới rãnh segment. Các không gian chết vừa nêu có thể chứa từ 5 đến 10% hỗn hợp trong cylindre và bộ phận hỗn hợp này không cháy được trong quá trình cháy chính. Trong giai đoạn giãn nở, khi quay ngược lại cylindre, một bộ phận HC chứa trong không gian chết bị oxy hóa, phần còn lại (hơn 50%) thoát ra ngoài theo khí xả. Thực nghiệm cho thấy hơn 80% HC chứa trong sản phẩm cháy do các không gian chết của nhóm piston-segment-cylindre gây ra; 13% lượng HC do không gian chết của đệm culasse 2% do không gian chết của bougie. Giảm khoảng cách giữa segment thứ nhất so với đỉnh piston có thể làm giảm nồng độ HC từ 47 đến 74% so với giá trị bình thường tùy theo điều kiện làm việc của động cơ. Vị trí của nến đánh lửa cũng ảnh hưởng đến mức độ phát sinh HC; nếu nến đánh lửa đặt gần các không gian chết thì trong không gian đó có chứa một bộ phận sản phẩm cháy; ngược lại, nếu nến đánh lửa đặt xa thì không gian chết chứa chủ yếu hỗn hợp khí chưa cháy. Trong nhiều trường hợp, sự chênh lệch nồng độ HC có thể đạt đến 20%. Lọt khí carter là lượng khí lọt từ cylindre xuống carter trong quá trình nén và cháy do sự không kín khít của segment. Lọt khí carter cũng là nguồn phát sinh HC nếu nó được thải trực tiếp ra khí quyển. Ngày nay, ở hầu hết động cơ ô tô, lượng khí này được dẫn vào đường nạp để tăng tính kinh tế và giảm mức độ phát sinh HC. Để lượng hỗn hợp chưa cháy chứa trong các không gian chết không quay ngược lại buồng cháy, trong một số trường hợp người ta có thể giảm độ kín khít của segment để lượng khí này lọt xuống carter và bị đốt cháy khi quay vào lại cylindre theo đường nạp. Không gian chết ở chân ren Không gian chết bougie giữa đế và nấm soupape Không gian chết ở đệm culasse Không gian chết giữa segment và rãnh segment Hình 4.15: Nguồn phát sinh HC trong động cơ đánh lửa cưỡng bức 50
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong Vì vậy, việc thiết kế hợp lí buồng cháy, lựa chọn hợp lí dạng piston, segment, đệm culasse để giảm các không gian chết, lựa chọn vị trí đặt bougie tốt sẽ làm giảm đáng kể nồng độ HC trong khí xả. 4.4.3. Sự hấp thụ và giải phóng HC ở màng dầu bôi trơn Pha dầu bôi trơn vào nhiên liệu, như trường hợp động cơ 2 kì, sẽ làm gia tăng mức độ phát sinh HC. Khi pha thêm 5% dầu bôi trơn vào nhiên liệu thì nồng độ HC trong khí xả có thể tăng gấp đôi hay gấp ba so với trường hợp động cơ làm việc với nhiên nhiên không pha dầu bôi trơn. Cơ chế làm tăng HC khi pha dầu bôi trơn vào nhiên liệu có thể giải thích như sau. Trong giai đoạn nạp, màng dầu bôi trơn được tráng trên mặt gương cylindre ở trạng thái bão hòa hơi hydrocarbon ở áp suất nạp. Khi cháy hết nhiên liệu, sự giải phóng hơi nhiên liệu từ màng dầu bôi trơn vào khí cháy bắt đầu và đồng thời quá trình này tiếp tục trong kì giãn nở và thải. Trong quá trình đó, một bộ phận hơi này sẽ hòa trộn với khí cháy ở nhiệt độ cao và bị oxy hóa; một bộ phận khác hòa trộn với hỗn hợp khí cháy nhiệt độ thấp, không bị oxy hóa, góp phần làm tăng HC. Luợng HC này tăng theo độ hòa tan của nhiên liệu trong dầu bôi trơn. Sự hiện diện của muội than trong buồng cháy cũng ảnh hưởng đến sự phát sinh HC. Thực tế cho thấy HC có khuynh hướng gia tăng theo mức độ tiêu thụ dầu bôi trơn. Vì vậy, lựa chọn dạng segment dầu hợp lý sẽ làm giảm mức độ tiêu thụ dầu bôi trơn đồng thời làm giảm mức độ phát sinh HC. 4.4.4. Ảnh hưởng của chất lượng quá trình cháy Sự dập tắt màng lửa khi nó lan đến gần thành là một trong những nguyên nhân làm gia tăng HC trong khí xả động cơ. Màng lửa có thể bị tắt khi áp suất và nhiệt độ giảm xuống nhanh. Hiện tượng này diễn ra ở chế độ không tải hay tải nhỏ và tốc độ thấp với thành phần khí sót cao. Ngay cả khi động cơ được điều chỉnh tốt ở chế độ làm việc bình thường, sự dập tắt màng lửa cũng diễn ra ở chế độ quá độ (gia tốc hay giảm tốc). 4.4.5. Ảnh hưởng của lớp muội than Sự hình thành lớp muội than (oxyde chì đối với động cơ sử dụng nhiên liệu pha chì hay là lớp than do dầu bôi trơn bị cháy) xuất hiện trong buồng cháy khi ô tô chạy được khoảng vài ngàn cây số, cũng góp phần làm gia tăng HC. Cơ chế làm tăng HC do sự hiện diện của muội than khá phức tạp. Sự hấp thụ và giải phóng HC ở lớp muội than cũng giống như màng dầu. Mặt khác, nếu kích thước ban đầu của các không gian chết hẹp, lớp bồ hóng làm giảm lượng hỗn hợp khí chưa cháy chứa trong các không gian này vì vậy làm giảm HC. Ngược lại, nếu các không gian này nguyên thủy đủ lớn, sự bám bồ hóng làm giảm tiết diện lối vào, tăng khả năng dập tắt màng lửa do đó làm tăng mức độ phát sinh HC. 51
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong 4.4.6. Ảnh hưởng của sự oxy hóa HC trong kì giãn nở và thải Lượng hydrocarbure không tham gia vào quá trình cháy chính trong thực tế lớn hơn nhiều so với lượng hydrocarbure đo được trong khí xả động cơ. Thật vậy, sau khi thoát ra khỏi các không gian chết, nhiên liệu chưa cháy khuếch tán vào khối sản phẩm cháy ở nhiệt độ cao và tại đây chúng bị oxy hóa một cách nhanh chóng. Sự oxy hóa này càng thuận lợi khi lượng oxy trong sản vật cháy càng nhiều (hỗn hợp nghèo). Hydrocarbure ở thể khí bị oxy hóa khi nó tồn tại trong môi trường có nhiệt độ khoảng 600°C (nhiệt độ thông thường của nấm soupape xả) ít nhất là 50ms. Lượng HC thải ra bao gồm nhiên liệu chưa cháy hết và các sản phẩm cháy không hoàn toàn. Mặt khác, quá trình oxy hóa cũng tiếp tục diễn ra trên đường xả làm giảm thêm nồng độ HC sau khi chúng thoát ra khỏi buồng cháy. Vì vậy những điều kiện vận hành của động cơ làm gia tăng nhiệt độ khí xả (hỗn hợp có độ đậm đặc xấp xỉ 1, động cơ làm việc với tốc độ cao, đánh lửa muộn, tỉ số nén cao ) và thời gian tồn tại của hỗn hợp trong buồng cháy dài (tải thấp) sẽ làm gia tăng tỉ lệ HC bị oxy hóa. Giảm góc đánh lửa sớm làm tăng nhiệt độ hỗn hợp khí ở cuối quá trình giãn nở tạo điều kiện thuận lợi cho việc oxy hóa HC trên đường thải. Về mặt kỹ thuật, để tăng khả năng oxy hóa HC trên đường thải cần làm giảm tổn thất nhiệt ở soupape và cổ góp bằng cách gia tăng tiết diện lưu thông và cách nhiệt đoạn đầu đường thải, chẳng hạn như phủ một lớp vật liệu gốm trên thành ống. 4.5. Trường hợp động cơ Diesel 4.5.1. Đặc điểm phát sinh HC trong quá trình cháy động cơ Diesel Do nguyên lí làm việc của động cơ Diesel, thời gian lưu lại của nhiên liệu trong buồng cháy ngắn hơn trong động cơ đánh lửa cưỡng bức nên thời gian dành cho việc hình thành sản phẩm cháy không hoàn toàn cũng rút ngắn làm giảm thành phần hydrocarbure cháy không hoàn toàn trong khí xả. Do nhiên liệu Diesel chứa hydrocarbure có điểm sôi cao, nghĩa là khối lượng phân tử cao, sự phân hủy nhiệt diễn ra ngay từ lúc phun nhiên liệu. Điều này là tăng tính phức tạp của thành phần hydrocarbure cháy không hoàn toàn trong khí xả. Quá trình cháy trong động cơ Diesel là một quá trình phức tạp, trong quá trình đó diễn ra đồng thời sự bay hơi nhiên liệu và hòa trộn nhiên liệu với không khí và sản phẩm cháy. Khi độ đậm đặc trung bình của hỗn hợp quá lớn hoặc quá bé đều làm giảm khả năng tự cháy và lan tràn màng lửa. Trong trường hợp đó nhiên liệu sẽ được tiêu thụ từng phần trong những phản ứng oxy hóa diễn ra chậm ở giai đoạn giãn nở sau khi hòa trộn thêm không khí. Chúng ta có thể chia ra hai khu vực đối với bộ phận nhiên liệu được phun vào buồng cháy trong giai đoạn cháy trễ: khu vực hỗn hợp quá nghèo do pha trộn với không khí quá nhanh và khu vực hỗn hợp quá giàu do pha trộn với không khí quá chậm. Trong trường hợp đó, chủ yếu là khu vực hỗn hợp quá nghèo diễn ra sự cháy không hoàn toàn 52
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong còn khu vực hỗn hợp quá giàu sẽ tiếp tục cháy khi hòa trộn thêm không khí. Đối với bộ phận nhiên liệu phun sau giai đoạn cháy trễ, sự oxy hóa nhiên liệu hay các sản phẩm phân hủy nhiệt diễn ra nhanh chóng khi chúng dịch chuyển trong khối khí ở nhiệt độ cao. Tuy nhiên sự hòa trộn không đồng đều có thể làm cho hỗn hợp quá giàu cục bộ hay dẫn đến sự làm mát đột ngột làm tắt màng lửa, sinh ra các sản phẩm cháy không hoàn toàn trong khí xả. Mức độ phát sinh HC trong động cơ Diesel phụ thuộc nhiều vào điều kiện vận hành; ở chế độ không tải hay tải thấp, nồng độ HC cao hơn ở chế độ đầy tải. Thêm vào đó, khi thay đổi tải đột ngột có thể gây ra sự thay đổi mạnh các điều kiện cháy dẫn đến sự gia tăng HC do những chu trình bỏ lửa. Cuối cùng, khác với động cơ đánh lửa cưỡng bức, không gian chết trong động cơ Diesel không gây ảnh hưởng quan trọng đến nồng độ HC trong khí xả vì trong quá trình nén và giai đoạn đầu của quá trình cháy, các không gian chết chỉ chứa không khí và khí sót. Ảnh hưởng của lớp dầu bôi trơn trên mặt gương cylindre, ảnh hưởng của lớp muội than trên thành buồng cháy cũng như ảnh hưởng của sự tôi màng lửa đối với sự hình thành HC trong động cơ Diesel cũng không đáng kể so với trường hợp động cơ đánh lửa cưỡng bức. 4.5.2. Phát sinh HC trong trường hợp hỗn hợp quá nghèo Sự phân bố không đồng đều nhiên liệu trong cylindre ngay lúc bắt đầu phun được giới thiệu trên hình 4.16. Trong dòng xoáy lốc, sự tự cháy diễn ra trong khu vực có độ đậm đặc hơi thấp hơn 1. Bộ phận nhiên liệu ở ngoài rìa tia nằm ngoài giới hạn dưới của sự tự bén lửa do đó chúng không thể tự cháy cũng không thể duy trì màng lửa. Khu vực đó chỉ có thể là vị trí sản sinh các phản ứng chậm dẫn đến sản phẩm cháy không hoàn toàn. Do đó trong vùng này có mặt nhiên liệu chưa cháy hết, những sản vật phân giải từ nhiên liệu, những sản phẩm oxy hóa cục bộ (CO, aldehyde và những oxyde khác) và một bộ phận của những sản phẩm này có mặt trong khí xả. Tầm quan trọng của những hydrocarbure chưa cháy từ những khu vực nghèo này phụ thuộc vào lượng nhiên liệu phun vào động cơ trong thời kì cháy trễ, phụ thuộc vào tỉ lệ không khí kéo theo vào tia trong giai đoạn này và những điều kiện lí hóa ảnh hưởng đến sự tự cháy trong cylindre. Không khí xoáy lốc f >1 Vòi phun f = 0 f = f L f =1 Giới hạn tia nhiên liệu HC trong vùng Điểm đánh hỗn hợp quá lửa 53 nghèo
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong Hình 4.16: Phân bố độ đậm đặc trong tia phun Diesel Vì vậy nồng độ HC trong khí xả và độ dài của giai đoạn cháy trễ có quan hệ mật thiết với nhau, hay nói cách khác mức độ phát sinh HC có liên quan đến chỉ số cetane của nhiên liệu. Những thay đổi điều kiện vận hành của động cơ làm kéo dài thời kì cháy trễ sẽ làm gia tăng nồng độ HC. 4.5.3. Phát sinh HC trong trường hợp hỗn hợp quá giàu Có hai nguyên nhân dẫn đến sự phát sinh HC do hỗn hợp quá giàu. Nguyên nhân thứ nhất do nhiên liệu rời khỏi vòi phun với tốc độ thấp và thời gian phun kéo dài. Nguồn phát sinh HC chính trong trường hợp này là không gian chết ở mũi vòi phun và sự phun rớt do sự đóng kim phun không dứt khoát. Nguyên nhân thứ hai là do sự thừa nhiên liệu trong buồng cháy do hỗn hợp quá đậm. Vào cuối giai đoạn phun, lỗ phun (không gian chết) ở mũi vòi phun chứa đầy nhiên liệu. Trong giai đoạn cháy và giãn nở, nhiên liệu được sấy nóng và một bộ phận bốc hơi thoát ra khỏi lỗ phun (ở pha lỏng và hơi) và đi vào cylindre với tốc độ thấp và hòa trộn chậm với không khí, do đó chúng không bị đốt cháy trong giai đoạn cháy chính. Ở động cơ phun trực tiếp, thời gian của giai đoạn cháy trễ bé, mức độ phát sinh HC tỉ lệ với thể tích không gian chết ở mũi vòi phun. Tuy nhiên, không phải toàn bộ thể tích nhiên liệu chứa trong không gian chết đều có mặt trong khí xả. Ví dụ 1mm3 không gian chết trong buồng cháy động cơ phát sinh khoảng 350ppmC trong khí xả, trong khi đó 1mm3 nhiên liệu cho 1660ppmC. Sự chênh lệch này là do một bộ phận hydrocarbure nặng tiếp tục lưu lại trong vòi phun và một bộ phận hydrocarbure nhẹ bị oxy hóa khi thoát ra khỏi không gian chết. Trong động cơ có buồng cháy dự bị cơ chế này cũng diễn ra tương tự nhưng với mức độ thấp hơn. Ở động cơ phun trực tiếp, hiện tượng nhả khói đen làm giới hạn khả năng tăng độ đậm đặc trung bình của hỗn hợp ở chế độ toàn tải. Ở chế độ tải thấp, tốc độ phun bé và lượng nhiên liệu phun vào nhỏ, do đó động lượng của tia phun bé làm giảm lượng không khí kéo theo vào tia nên độ đậm đặc cục bộ rất cao. Trong điều kiện quá độ khi gia tốc, hỗn hợp trong buồng cháy có thể rất đậm đặc. Trong trường hợp đó, dù tỉ lệ nhiên liệu- không khí tổng quát trong toàn buồng cháy thấp nhưng độ đậm đặc cục bộ rất cao trong giai đoạn giãn nở và thải. Khi độ đậm đặc cục bộ vượt quá 0,9 thì nồng độ HC sẽ gia tăng đột ngột. Ảnh hưởng tương tự như vậy cũng diễn ra trong động cơ có buồng cháy dự bị. Tuy nhiên cơ chế này chỉ gây ảnh hưởng đến nồng độ HC khi gia tốc và nó gây ảnh hưởng đến nồng độ HC ít hơn khi hỗn hợp nghèo ở chế độ không tải hay tải thấp. 4.5.4. Phát sinh HC do tôi ngọn lửa và hỗn hợp không tự bốc cháy Như động cơ đánh lửa cưỡng bức, sự tôi ngọn lửa diễn ra gần thành và đó chính là nguồn phát sinh HC. Hiện tượng này phụ thuộc đặc biệt vào khu vực va chạm giữa tia 54
- Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong nhiên liệu và thành buồng cháy. Sự bỏ lửa dẫn đến sự gia tăng mạnh nồng độ HC hiếm khi xảy ra đối với động cơ làm việc bình thường. Nó chỉ diễn ra khi động cơ có tỉ số nén thấp và phun trễ. Mặt khác, sự bỏ lửa cũng xảy ra khi khởi động động cơ Diesel ở trạng thái nguội với sự hình thành khói trắng (chủ yếu là do những hạt nhiên liệu không cháy tạo thành). 4.6. Trường hợp động cơ hai kì đánh lửa cưỡng bức Mặc dù người ta đã nghiên cứu sử dụng nhiều kết cấu của hệ thống quét thải nhằm hạn chế sự hòa trộn giữa khí cháy và khí chưa cháy, đặc biệt đối với động cơ hai kỳ dùng bộ chế hòa khí, nhưng vẫn có một bộ phận khí nạp mới thoát ra đường xả làm tăng nồng độ HC, đồng thời làm giảm công suất và tăng suất tiêu hao nhiên liệu của động cơ. Mặt khác, khi làm việc ở tải cục bộ, loại động cơ này dễ bỏ lửa làm tăng HC. Hiện nay có nhiều giải pháp nhằm khắc phục nhược điểm trên của động cơ 2 kỳ trong đó có hai giải pháp hữu hiệu nhất. Giải pháp thứ nhất là tạo hỗn hợp không đồng đều trong không gian buồng cháy sao cho chỉ có bộ phận hỗn hợp nghèo bị thất thoát ra đường thải. Giải pháp thứ hai là phun nhiên liệu vào buồng cháy một khi cửa thải đã đóng. Trong trường hợp phun nhiên liệu, năng lượng cần thiết để dẫn động bơm phun nhiên liệu thường được trích ra từ động cơ do đó công suất động cơ bị giảm đi một ít. Mặt khác, so với động cơ 4 kì, thời gian dành cho quá trình nén rất ngắn (sau khi đóng cửa nạp và cửa thải) do đó phải phun nhiên liệu thật nhanh với tốc độ phun lớn khiến một bộ phận nhiên liệu bám lên thành cylindre làm tăng mức độ phát sinh HC trong khí xả. Một giải pháp có nhiều triển vọng hơn là phun nhiên liệu bằng khí nén trích từ buồng cháy động cơ. Lượng không khí này được nạp vào buồng nén trong kì nạp và nén của động cơ và được nén mạnh trong giai đoạn cháy và giãn nở. 55
- CƠ CHẾ HÌNH THÀNH Chương 5 BỒ HÓNG TRONG QUÁ TRÌNH CHÁY CỦA ĐỘNG CƠ DIESEL 5.1. Giới thiệu: Bồ hóng là chất ô nhiễm đặc biệt quan trọng trong khí xả động cơ Diesel. Tuy từ lâu người ta đã nhận biết được tác hại của chúng nhưng việc nghiên cứu sự hình thành chất ô nhiễm này trong khí xả động cơ Diesel chỉ mới thực sự phát triển từ những năm 1970 dựa vào những thành tựu của kỹ thuật quang học. Sự nguy hiểm của bồ hóng đối với sức khỏe con người đã được đề cập đến ở chương 1. Các HAP, kể cả các nitro-HAP và dinitro-HAP hấp thụ trong bồ hóng Diesel đều có khả năng gây đột biến tế bào và gây ung thư đường hô hấp. Ngoài ra, bồ hóng cũng có khả năng gây ung thư da nếu nạn nhân tiếp xúc thường xuyên với chúng và gây bệnh tụ máu dẫn đến những tác động nguy hiểm đến hệ tim mạch. Trong môi trường, các hạt bồ hóng trong không khí có tác dụng hấp thụ và khuếch tán ánh sáng mặt trời, làm giảm độ trong suốt của khí quyển và do đó làm giảm tầm nhìn. So với nông thôn, ở đô thị bức xạ mặt trời đo được trên mặt đất nhỏ hơn khoảng 15-20%. Khi nồng độ bồ hóng trong không khí đạt khoảng 0,1mg/m3 thì tầm nhìn xa chỉ còn 12km (so với tầm nhìn xa cực đại 36km), nhất là trong các đô thị có độ phát tán tầm thấp yếu và trên các trục lộ có sự tập trung phương tiện Diesel ở giờ cao điểm (nếu có khoảng 20% xe vận tải Diesel trong luồng thì tầm nhìn giảm từ 25-30%). Điều này gây mất an toàn giao thông. Ngoài ra, khi bồ hóng bám vào lá cây xanh thì khả năng quang hợp của lá cây bị giảm, làm cây cối dễ bị héo chết. Bồ hóng bám vào các công trình xây dựng sẽ gây ra sự ăn mòn kim loại Quá trình cháy khuếch tán trong động cơ Diesel rất thuận lợi cho việc hình thành bồ hóng. Thật vậy, sự cháy của hạt nhiên liệu lỏng trong khi chúng dịch chuyển trong buồng cháy cũng như sự tập trung cục bộ hơi nhiên liệu ở những vùng có nhiệt độ cao là nguyên nhân chính sản sinh bồ hóng. Bồ hóng trong khí xả là một trong những yếu tố chính giới hạn khả năng ứng dụng của động cơ Diesel hiện nay. Mặc dù các nhà khoa học và các nhà sản xuất ô tô đã quan tâm rất nhiều đến việc nghiên cứu vấn đề này nhưng đến nay người ta vẫn chưa tìm ra được một giải pháp kỹ thuật nào hữu hiệu nhằm hạn chế nồng độ bồ hóng trong giới hạn cho phép của các quy định về bảo vệ môi trường. Hai hướng nghiên cứu chính hiện nay là: 1- Cải thiện và tổ chức tốt quá trình cháy trong động cơ Diesel 57
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel 2- Lọc bồ hóng trên đường ống xả Giải pháp xử lý bồ hóng trên đường ống xả gặp rất nhiều khó khăn trong thực tế, nhất là giải quyết vấn đề tái sinh lõi lọc để giảm trở lực trên đường thải và việc nâng cao tuổi thọ các bộ lọc. Vì vậy, giải pháp có tính cơ bản của vấn đề bồ hóng chỉ có thể rút ra được trên cơ sở nghiên cứu tường tận quá trình hình thành chất ô nhiễm này để tìm cách hạn chế chúng ngay từ trong buồng cháy động cơ. Nghiên cứu sự hình thành bồ hóng bằng mô hình toán học hiện đang phát triển rất mạnh song song với các nghiên cứu về thực nghiệm. Phương pháp mô hình hóa có nhiều ưu điểm hơn vì việc đo đạc cục bộ trong buồng cháy rất phức tạp. Tất nhiên, kết quả của những nghiên cứu về thực nghiệm là không thể thiếu để kiểm chứng mô hình toán học. Động cơ Diesel cho tới nay vẫn là loại động cơ đốt trong được sử dụng rộng rãi nhờ tính kinh tế của nó cao. Tuy nhiên, với sự cạnh tranh của các loại động cơ đánh lửa cưỡng bức hiện đại, viễn ảnh áp dụng của loại động cơ này trên các phương tiện vận tải trong tương lai phụ thuộc nhiều vào kỹ thuật làm giảm nồng độ bồ hóng trong khí xả. 5.2. Hình thành bồ hóng trong ngọn lửa khuếch tán Quá trình cháy khuếch tác được áp dụng rộng rãi trong công nghiệp vì nó an toàn. Tuy nhiên do đặc điểm phân bố nhiên liệu không đồng nhất, việc khống chế quá trình cháy của nó gặp nhiều khó khăn hơn so với qua trình cháy của hỗn hợp đồng nhất. Cũng chính vì sự phân bố hỗn hợp không đồng nhất mà trong sản phẩm cháy của ngọn lửa khuếch tán luôn tồn tại những sản phẩm cháy không hoàn toàn mặc dù hỗn hợp tổng quát rất loãng. Trong số những sản phẩm cháy không hoàn toàn này người ta đặc biệt quan tâm đến bồ hóng. Sự hình thành bồ hóng trong ngọn lửa khuếch tán trước tiên phụ thuộc vào nhiên liệu. Nhiên liệu có thành phần C càng cao thì nồng độ bồ hóng càng lớn. Hình 5.1 so sánh nồng độ bồ hóng đo trên trục ngọn lửa khuếch tán của 3 loại nhiên liệu khác nhau: butane, propane và méthane với cùng điều kiện ban đầu (tốc độ phun 90m/s, đường kính lỗ phun 3mm). Nồng độ được biểu diễn thông qua bề dày đặc trưng của bồ hóng fv.L (L: chiều dài quang trình). Chúng ta thấy nồng độ bồ hóng trong sản phẩm cháy của ngọn lửa butane lớn nhất và nồng độ này thấp nhất trong ngọn lửa méthane. 58
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Yếu tố thứ hai ảnh hưởng đến nồng độ bồ hóng là nồng độ nhiên liệu và nồng độ oxygène. Thật vậy, sự hình thành bồ hóng chủ yếu là do quá trình cháy không hoàn toàn của nhiên liệu. Khi hỗn hợp nghèo và được phân bố đồng nhất thì nồng độ bồ hóng rất bé, có thể bỏ qua. Nồng độ oxygène ảnh hưởng đến sự oxy hóa bồ hóng sau khi chúng được hình thành do đó cũng ảnh hưởng đến nồng độ bồ hóng cuối cùng có mặt trong sản phẩm cháy. Hình 5.2a, b biểu diễn biến thiên của nồng độ nhiên liệu và oxygène theo chiều cao ngọn lửa propane có tốc độ phun ban đầu 90m/s và đường kính lỗ phun là 3mm. Hình 5.1: Ảnh hưởng của nhiên liệu đến mức độ phát sinh bồ hóng trong ngọn lửa khuếch tán a. b. Hình 5.2: Biến thiên của nồng độ nhiên liệu (a) và oxygène (b) theo chiều cao ngọn lửa khuếch tán propane 59
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Hình 5.3: Profil nhiệt độ trong ngọn lửa propane Hình 5.4: Phân bố fv.L trong ngọn lửa propane Yếu tố thứ ba ảnh hưởng đến sự hình thành bồ hóng là sự phân bố nhiệt độ trong ngọn lửa. Nhiệt độ cao ở vùng giàu nhiên liệu sẽ thuận lợi cho việc hình thành bồ hóng. Ngược lại nhiệt độ cao ở vùng thừa oxygène sẽ thuận lợi cho việc oxy hóa bồ hóng. Nồng độ bồ hóng thoát ra khỏi ngọn lửa khuếch tán là hiệu số giữa lượng bồ hóng hình thành và lượng bồ hóng bị oxy hóa. Hình 5.3 giới thiệu profil nhiệt độ trong ngọn lửa khuếch tán propane nghiên cứu. Tóm lại, nồng độ bồ hóng có mặt trong khí cháy sau khi thoát ra khỏi ngọn lửa khuếch tán phụ thuộc vào 4 yếu tố cơ bản: thành phần nhiên liệu, nồng độ nhiên liệu, nồng độ oxygène và sự phân bố nhiệt độ trong ngọn lửa. Hình 5 trình bày sự phân bố nồng độ bồ hóng trong ngọn lửa khuếch tán. Hình này cho thấy nồng độ bồ hóng đạt cực đại ở vùng nhiệt độ cao và giàu nhiên liệu. Ảnh hưởng của các yếu tố trên có thể được minh họa thông qua nghiên cứu biến thiên đường kính hạt bồ hóng trong ngọn lửa propane. Hình 5.5 biểu diễn biến thiên đường kính hạt bồ hóng theo phương hướng kính của ngọn lửa. Những hạt bồ hóng có đường kính bé tập trung ở những vùng có nhiệt độ và độ đậm đặc đều cao. Khi tăng chiều cao ngọn lửa, vị trí hình thành bồ hóng dịch chuyển ra xa trục. Ở độ cao x=400mm, điểm cực tiểu của đường kính biến mất và đường kính của hạt tăng đều đặn từ trục ra ngoài rìa ngọn lửa. Kết quả phân tích khí trên hình 5.2a cho thấy ở khu vực này, nồng độ nhiên liệu rất thấp không đủ điều kiện để hình thành các hạt bồ hóng mới. 60
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Hình 5.5: Biến thiên hướng kính của đường kính hạt bồ hóng Hình 5.6: Biến thiên đường kính hạt bồ hóng trên trục ngọn lửa theo chiều cao Do hiện tượng phát triển hạt bồ hóng sau khi hình thành nên những hạt có đường kính lớn phân tán ra ngoài khu vực hình thành bồ hóng. Kết quả thực nghiệm này cho thấy sự hình thành bồ hóng đòi hỏi phải có đồng thời hai điều kiện cơ bản đó là nhiệt độ cao và hỗn hợp đậm đặc. Kết luận này được kiểm chứng bằng sự biến thiên đường kính hạt theo chiều cao ngọn lửa cho trên hình 5.6. Thật vậy, chúng ta thấy đường kính hạt đầu tiên giảm theo chiều cao cùng với sự gia tăng của nhiệt độ trên trục ngọn lửa đến độ cao 450mm. Khi qua khỏi độ cao này, nhiệt độ trong ngọn lửa vẫn còn cao nhưng nồng độ 61
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel nhiên liệu bắt đầu giảm, quá trình hình thành bồ hóng chấm dứt, đường kính hạt gia tăng do hiện tượng hấp thụ bề mặt và liên kết hạt. 5.3. Bồ hóng trong khí xả động cơ Diesel Trong khí xả động cơ đốt trong, ngoài các chất khí độc như CO, NOx, HnCm, SOx còn có các hạt rắn tồn tại 3 dạng sau: các hạt chì của xăng pha chì, hạt sunphát của tạp chất lưu huỳnh trong nhiên liệu và hạt bồ hóng. Khi hoạt động bình thường, trong khí xả động cơ xăng có rất ít bồ hóng. Lượng bồ hóng chỉ đáng kể khi nó làm việc với hỗn hợp đậm đặc. Còn ở động cơ Diesel, do quá trình cháy khuếch tán như đã phân tích trên đây, bồ hóng là chất ô nhiễn đặc biệt quan trọng và là thành phần chủ yếu tồn tại dưới dạng hạt rắn trong khí xả. 1. Thành phần hạt bồ hóng Ngày nay, người ta đã biết rõ bồ hóng bao gồm các thành phần chính sau đây: - Carbon: Thành phần này ít nhiều phụ thuộc vào nhiệt độ cháy và hệ số dư lượng không khí trung bình, đặc biệt là khi động cơ hoạt động ở chế độ đầy tải hoặc quá tải. - Dầu bôi trơn không cháy: Đối với động cơ cũ thành phần này chiếm tỉ lệ lớn. Lượng dầu bôi trơn bị tiêu hao và lượng hạt bồ hóng có quan hệ với nhau. - Nhiên liệu chưa cháy hoặc cháy không hoàn toàn: Thành phần này phụ thuộc vào nhiệt độ và hệ số dư lượng không khí. - Sun phát: do lưu huỳnh trong nhiên liệu bị oxy hóa và tạo thành SO2 hoặc SO4. - Các chất khác: lưu huỳnh, calci, sắt, silicon, chromium, phosphor, các hợp chất calci từ dầu bôi trơn. Thành phần hạt bồ hóng còn phụ thuộc vào tính chất nhiên liệu, đặc điểm của quá trình cháy, dạng động cơ cũng như thời hạn sử dụng của động cơ (cũ hay mới). Thành phần bồ hóng trong sản phẩm cháy của nhiên liệu có thành phần lưu huỳnh cao khác với thành phần bồ hóng trong sản phẩm cháy của nhiên liệu có hàm lượng lưu huỳnh thấp. Hình 5.7 so sánh thành phần bồ hóng của hai loại nhiên liệu Diesel có thành phần lưu huỳnh 0.26% và 0.05%. Đối với động cơ đã qua sử dụng trên 10 năm, thành phần bồ hóng có chứa đến 40% dầu bôi trơn không cháy hết như hình 5.8. 62
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel HC HC 0.03 0.007 Håt C arbon D Àu bôi 0.11 trÖ n D Àu bôi 0.017 Håt trÖn 0.10 C arbon 0.043 Sunphát Sunphát 0.008 0.06 Nhiên liŒu:US-2D Nhiên liŒu:"L o w Sulfer Fuel" 0.26w t%Sulfer. NÒng Ƕ bÒ hóng 0.05w t%Sulfer. NÒng Ƕ bÒ hóng t°ng c¶ng: 0.30g/HP_h t°ng c¶ng: 0.075g/HP_h Hình 5.7: Thành phần hạt bồ hóng theo tính chất nhiên liệu D Àu bôi trÖ n HC 40% 7% C hÃt khác 8% Sunphát 14% C arbon 31% Hình 5.8: Thành phần hạt bồ hóng của động cơ đã sử dụng trên 10 năm Kết quả nghiên cứu thực nghiệm về sự phân bố kích thước hạt cho thấy bồ hóng trong khí xả tồn tại dưới hai dạng: dạng đơn và dạng tích tụ. Dạng đơn (gam kích thước nhỏ) tồn tại ở nhiệt độ trên 5000C. Ở dạng này, các hạt bồ hóng là sự kết hợp của các hạt sơ cấp hình cầu (mỗi một hạt sơ cấp hình cầu này chứa khoảng 105-106 nguyên tử carbon). Dạng đơn này còn được gọi là thành phần không hòa tan ISF (Insoluble Fraction) hay thành phần rắn SOL (Solid). Dạng tích tụ (gam kích thước lớn) do các bồ hóng liên kết lại với nhau và tồn tại ở nhiệt độ thấp hơn 5000C. Các hạt bồ hóng này được bao bọc bởi các thành phần hữu cơ nặng ngưng tụ và hấp thụ trên bề mặt hạt: HC chưa cháy, HC bị oxy hóa (keton, ester, ether, axít hữu cơ), và các hydrocarbure thơm đa nhân HAP (Hydrocarbures Aromatiques Polynucléaires). Thể tích tụ này có thể còn có thêm các hạt khác như SO2, NO2, SO4. Những hạt này còn được gọi là thành phần hữu cơ hòa tan SOF 63
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel (Soluble Organic Fraction). Trong khí xả động cơ Diesel thành phần SOF có thể chiếm từ 5%-80%. Hình 5.9: Cấu trúc chuỗi bồ hóng Hình 5.10: Dạng những hạt sơ cấp c 0.335nm 0.67nm b a Hình 5.11: Mô hình cấu trúc dạng hạt sơ cấp Hình 5.12: Cấu trúc tinh thể graphit 2. Cấu trúc hạt bồ hóng Hình 5.9 và 5.10 trình bày ảnh chụp khuếch đại của chuỗi và hạt sơ cấp tạo thành hạt bồ hóng trong khí xả động cơ Diesel. Một cách tổng quát có thể nói hạt bồ hóng mà người ta thường gọi hình thành do sự liên kết của nhiều hạt sơ cấp hình cầu thành từng khối hoặc chuỗi. Mỗi hạt bồ hóng (khối hay chuỗi) có thể chứa đến 4000 hạt hình cầu sơ cấp. Các hạt sơ cấp có đường kính từ 10 đến 80nm và đại bộ phận hạt nằm trong khoảng 15-30nm, đường kính trung bình của các hạt bồ hóng nằm trong khoảng 100-150nm, có khi lên đến 500-1000nm. Cấu trúc tinh thể của hạt bồ hóng trong khí xả động cơ Diesel có dạng tương tự như graphit (hình 5.11) nhưng ít đều đặn hơn. Mỗi hạt sơ cấp hình cầu là một tập hợp khoảng 1000 mầm tinh thể, có dạng phiến mỏng được xếp đồng tâm quanh tâm của mỗi hạt cầu, tương tự như cấu trúc hạt carbon đen. Những nguyên tử carbon kết nối với nhau 64
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel theo các phiến lục giác phẳng cách nhau 0,34-0,36nm (chỉ lớn hơn một chút so với graphit: 0,33nm). Các phiến này kết hợp với nhau tạo thành các mầm tinh thể (từ 2-5 phiến) với cấu trúc giống như carbon đen. Những mầm tinh này lại sắp xếp lại theo các hướng song song với mặt hạt cầu với kết cấu siêu tĩnh để tạo thành các hạt. 5.4. Tình hình nghiên cứu và các quy định về nồng độ bồ hóng trong khí xả động cơ Diesel hiện nay 5.4.1. Tình hình nghiên cứu bồ hóng Nghiên cứu bồ hóng trong khí xả động cơ Diesel hiện nay tập trung vào các hướng chính sau đây: 1- Nghiên cứu sự hình thành bồ hóng bên trong buồng cháy động cơ Trên cơ sở hiểu biết tường tận quá trình hình thành bồ hóng chúng ta có thể nghiên cứu tổ chức quá trình cháy, xác định chế độ làm việc tối ưu của động cơ cũng như xác định chất lượng nhiên liệu và các chất phụ gia chống ô nhiễm để đảm bảo cháy sạch nhiên liệu, làm giảm nồng độ bồ hóng trong sản phẩm cháy. Việc nghiên cứu quá trình tạo bồ hóng trong động cơ thường xuất phát từ các mô hình ngọn lửa khuếch tán bên ngoài động cơ. Theo hướng này có rất nhiều công trình nghiên cứu về mô hình hóa quá trình cháy và tạo bồ hóng trong các ngọn lửa khuếch tán một pha và hai pha. Đặc biệt, sự phát triển đồng dạng toán học về quá trình cháy đã cho phép thiết lập mô hình tổng quát cho nhiều hệ thống cháy khác nhau để từ đó có thể mô hình hóa quá trình tạo bồ hóng bên trong buồng cháy động cơ Diesel. Tesner và Magnussen đã đưa ra mô hình tạo bồ hóng hai giai đoạn. Các mô hình tạo bồ hóng khác cũng đã được tổng kết trong các tài liệu của Morel, Kenedy, Lee Tính đúng đắn của mô hình của Morel và của Tesner-Magnussen đã được Bùi Văn Ga kiểm nghiệm trên các ngọn lửa rối và khuếch tán một pha và hai pha. Đối với động cơ Diesel, mô hình nhiều khu vực ("multi-zone") dựa trên quy luật thực nghiệm của khí kéo theo vào tia nhiên liệu và sự phân bố nhiên liệu trong tia để tính toán nhiệt độ trung bình trong mỗi khu vực và từ đó tính toán quá trình cháy và tạo bồ hóng trong động cơ Diesel đã cho phép xây dựng các phần mềm đa phương chạy trên các máy tính mini như KIVA2, KIVA3 và TURBO-KIVA. 2- Nghiên cứu xử lý bồ hóng trên đường xả động cơ Hướng nghiên cứu này chủ yếu tập trung hoàn thiện 2 giải pháp: - Xử lý bồ hóng bằng kỹ thuật lọc và tái sinh lọc - Xử lý bồ hóng bằng bộ xúc tác oxy hóa 65
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Trong chương 7 chúng ta sẽ nghiên cứu các giải pháp này. Tuy các nhà khoa học và công nghệ đã có nhiều cải tiến và hoàn thiện các bộ lọc nhưng cho đến nay vẫn chưa có được một giải pháp tối ưu nào tỏ ra hữu hiệu cho vấn đề xử lý bồ hóng trên đường xả. 5.4.2. Các quy định về nồng độ bồ hóng trong khí xả động cơ Diesel Hiện nay, quy trình kiểm tra tiêu chuẩn của mỗi nước phụ thuộc vào chế độ vận hành của ô tô ở một thành phố mà nước đó chọn làm tiêu biểu. Các nước đang phát triển thường chọn chế độ thử của những nước công nghiệp phát triển để áp dụng ở nước mình vớI một ít điều chỉnh cho phù hợp với tình hình thực tế. Từ năm 1970, các nước trên thế giới đã thiết lập tiêu chuẩn độ khói cho các loại xe tải và xe bus Diesel như các hình 5.13 (Cộng đồng Châu Âu, loại xe có trọng lượng toàn bộ trên 3500kg), hình 5.14 (Mĩ, loại xe có trọng lượng toàn bộ trên 3850kg) và hình 5.15 (Nhật, loại xe có trọng lượng toàn bộ trên 2500kg). Ở Việt Nam, Nhà Nước đã ban hành các tiêu chuẩn TCVN 5418-91 và TCVN 6438-98 về độ khói trong khí xả động cơ Diesel (xem chương 2). 5.5. Cơ chế tạo bồ hóng trong buồng cháy động cơ Diesel Các nghiên cứu cơ bản về quá trình hình thành bồ hóng trong các ngọn lửa và trong buồng cháy động cơ Diesel đã được đề cập nhiều trong các tài liệu gần đây với 5 cơ chế hình thành hạt bồ hóng điển hình: 1. Polyme hóa qua acétylène và polyacétylène 2. Khởi tạo các hydrocarbure thơm đa nhân (HAP) 3. Ngưng tụ và graphit hóa các cấu trúc HAP 4. Tạo hạt qua các tác nhân ion hóa và hợp thành các phân tử nặng 5. Tạo hạt qua các tác nhân trung tính và phát triển bề mặt hợp thành các thành phần nặng. 1 h) 0.8 HP/ 0.6 g/ ( 0.4 khói 0.2 ñ¶ ñ¶ 0 1970 1974 1978 1982 1986 1990 1994 1998 2002 Næm dÜÖng lÎch 66
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Hình 5.13: Tiêu chuẩn châu Âu về độ khói của ô tô Diesel ở các mốc thời gian khác nhau 1 h) 0.8 HP/ 0.6 g/ ( 0.4 khói 0.2 ñ¶ ñ¶ 0 1970 1974 1978 1982 1986 1990 1994 1998 2002 Næm dÜÖng lÎch Hình 5.14: Tiêu chuẩn của Mĩ về độ khói của ô tô Diesel ở các mốc thời gian khác nhau 1 h) 0.8 HP/ 0.6 g/ ( 0.4 khói 0.2 ñ¶ ñ¶ 0 1970 1974 1978 1982 1986 1990 1994 1998 2002 Næm dÜÖng lÎch Hình 5.15: Tiêu chuẩn Nhật Bản về độ khói của ô tô Diesel ở các mốc thời gian khác nhau Hiện nay người ta thường mô tả sự hình thành bồ hóng qua 4 giai đoạn được tóm tắt trên hình 5.16. Nhiên liệu+Không khí Tạo hạt nhân Phân hủy nhiệt Các hạt cơ bản Axêtylen Phát triển bề mặt các hạt Oxy hóa cơ bản Các hạt bồ hóng ban đầu Phát triển bề mặt Oxy hóa các hạt bồ hóng ban đầu 67 Các hạt bồ hóng Hợp dính Ngưng tụ Phát triển bề mặt Liên kết hạt Oxy hóa
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Hình 5.16: Quá trình tạo bồ hóng trong động cơ Diesel 5.5.1. Hình thành hạt bồ hóng Vật chất của pha ngưng tụ đầu tiên phát triển từ những phân tử nhiên liệu thông qua các sản phẩm của sự oxy hóa hoặc các sản phẩm phân hủy nhiệt (pyrolyse). Những sản phẩn này gồm những hydrocarbure không bão hòa khác nhau, đặc biệt là acétylène và các đồng vị bậc cao của nó, và những HAP. Hai dạng phần tử này được coi như là nhân tố chính trong sự hình thành bồ hóng. Phản ứng ngưng tụ của những phân tử thể khí dẫn đến sự hình thành các hạt nhân bồ hóng đầu tiên có đường kính rất bé (d<2nm), đây là các hạt cơ sở được hợp thành bởi một lượng lớn các gốc tinh thể đơn lẻ có kích thước từ 20 - 30A0. H H H H C H C .C C C C C H C C C C2H2 C C C2H2 . C2H+C4H2 C . C C C H C H + C H H 2 2 H C . C C . Hình 5.17b C C H Hình 5.17a: Cơ chế trung gian về động hóa học của sự tạo thành bồ hóng từ các phân tử aromatics H 68
- Chương 5: Cơ chế hình thành bồ hóng trong quá trình cháy của động cơ Diesel Aromatics Các phản ứng ngưng tụ Trực tiếp (h h) Bồ hóng Gián tiếp (chậm) Các phản ứng CHx Bồ hóng phân nhánh C2Hx C3Hx Hình 5.17b: Mô hình cơ chế tạo hạt bồ hóng từ aromatics và aliphatics Aliphatic 69