201 Bài tập Phương trình vi phân
Bạn đang xem 20 trang mẫu của tài liệu "201 Bài tập Phương trình vi phân", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- 201_bai_tap_phuong_trinh_vi_phan.pdf
Nội dung text: 201 Bài tập Phương trình vi phân
- www.VNMATH.com 1 . . BAI` TAˆ. P PHUONG TR`INH VI PHANˆ . . 1) Gia'i phuong trnh: 2xy0y” = y02 − 1 HD gia’i: D- a. t y0 = p : 2xpp0 = p2 − 1 . 2pdp dx √ Voi x(p2 − 1) 6= 0 ta co: = ⇔ p2 − 1 = C ⇔ p = ± C x + 1 p2 − 1 x 1 1 dy √ 2 3 p = = C1 + 1 ⇒ y = (C1x + 1) 2 + C2 dx 3C1 . . √ 2) Gia'i phuong trnh: y.y” = y0 dp . . . √ dp HD gia’i: D- a. t y0 = p ⇒ y” = p (hamtheo y). Phuong trnhtro' thanh: yp = p dy dy . . . . . dy √ dy √ Voi p 6= 0 ta duo. c phuong trnh: dp = √ ⇒ p = 2 y + C ⇔ = 2 y + C ⇒ y 1 dx 1 dy dx = √ 2 y + C1 . √ C1 √ Tu donghi^e.m t^o'ng quat: x = y − ln |2 y + C | + C 2 1 2 Ngoaira y = c: hang cu~ng langhi^e.m. . . 3) Gia'i phuong trnh: a(xy0 + 2y) = xyy0 HD gia’i: a(xy0 + 2y) = xyy0 ⇒ x(a − y)y0 = −2ay . . . . . . . a − y 2a N^eu y 6= 0, ta cophuong trnhtuong duong voi dy = − dx ⇔ x2ayae−y = C y x Ngoaira y = 0 cu~ng langhi^e.m. . . 4) Gia'i phuong trnh: y” = y0ey dp . . dp HD gia’i: D- a. t y0 = p ⇒ y” = p thay vaophuong trnh: p = pey dy dy dp dy dy Vo.i y y y p 6= 0 : = e ⇔ p = e + C1 ⇒ = e + C1 ⇔ y = dx dy dx e + C1 y y y Vo.i ta co: R dy 1 R e + C1 − e 1 R e dy y C1 6= 0 y = y dy = (y − y ) = − e + C1 C1 e + 1 C1 e + C1 C1 1 y ln(e + C1) C1 −y −e nˆe´u C1 = 0 nhu. v^ay: R dx . y = 1 y e + C1 (y − ln |e + C1|) nˆe´u C1 6= 0. C1 Ngoaira y = C : hang lam^o. t nghi^e.m . . . 5) Gia'i phuong trnh: xy0 = y(1 + ln y − ln x) voi y(1) = e
- 2 www.VNMATH.com . . . y y . . HD gia’i: D- ua phuong trnh v^e: y0 = (1 + ln ), da. t y = zx duo. c: xz0 = z ln z x x dz dx y • z ln z 6= 0 ⇒ = ⇒ ln z = Cx hay ln = Cx ⇔ y = xeCx z ln z x x y(1) = e → C = 1. V^a. y y = xex . . 6) Gia'i phuong trnh: y”(1 + y) = y02 + y0 dz . . dz dy HD gia’i: D- a. t y0 = z(y) ⇒ z0 = z thay vaophuong trnh: = dy z + 1 y + 1 dy ⇒ z + 1 = C1(y + 1) ⇒ z = C1y + C1 − 1 ⇔ = dx (∗) C1y + C1 − 1 • C1 = 0 ⇒ (∗) cho y = C − x 1 • C1 6= 0 ⇒ (∗) cho ln |C1y + C1 − 1| = x + C2 C1 Ngoaira y = C langhi^e.m. ' 1 Tom la.i nghi^e.m t^ong quat: y = C, y = C − x; ln |C1y + C1 − 1| = x + C2 C1 . . 2 7) Gia'i phuong trnh: y0 = y2 − x2 HD gia’i: Bi^en d^o'i (3) v^e da.ng: x2y0 = (xy)2 − 2 (∗) D- a. t z = xy ⇒ z0 = y + xy0 thay vao (∗) suy ra: dz dx rz − 1 xz0 = z2 + z − 2 ⇔ = ⇔ 3 = Cx z2 + z − 2 x z + x xy − 1 V^a. y TPTQ: = Cx3. xy + 2 . . 8) Gia'i phuong trnh: yy” + y02 = 1 dz HD gia’i: D- a. t y0 = z(y) ⇒ y” = z. dy . . z dy C1 Bi^en d^o'i phuong trnh v^e: dz = ⇔ z2 = 1 + 1 − z2 y y2 dy r C dy ⇒ = ± 1 + 1 ⇔ ± R = dx ⇒ y2 + C = (x + C )2 dx y2 r C 1 2 1 + 1 y2 ' 2 2 Nghi^e.m t^ong quat: y + C1 = (x + C2) . . √ 9) Gia'i phuong trnh: 2x(1 + x)y0 − (3x + 4)y + 2x 1 + x = 0 3x + 4 1 HD gia’i: y0 − .y = −√ ; x 6= 0, x 6= −1 2x(x + 1) x + 1 . . Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at: dy 3x + 4 2 1 Cx2 R = R dx = R ( − )dx ⇔ y = √ y 2x(x + 1) x 2(x + 1) x + 1
- www.VNMATH.com 3 1 1 Bi^en thi^enhang s^o: C0 = − ⇒ C = − + ε. x2 x x2 1 V^a. y nghi^e.m t^o'ng quat: y = √ ( + ε) x + 1 x ( . . y(0) = 0 10) Gia'i phuong trnh: y” = e2y thoa' y0(0) = 0 dz . . . dz z2 e2y HD gia’i: D- a. t z = y0 → y” = z. phuong trnh tro' thanh z. = e2y ⇔ = + ε dy dy 2 2 1 . y0(0) = y(0) = 0 ⇒ ε = − . V^a. y z2 = e2y − 1. Tu do: 2 dy √ Z dy √ z = = e2y − 1 ⇒ √ = x + ε. d¯ˆo’i biˆe´n t = e2y − 1 dx e2y − 1 √ arctg e2y − 1 = x + ε 1 y(0) = 0 ⇒ ε = 0. V^a. y nghi^e.m ri^engthoa' di^eu ki^e.n d^e bai: y = ln(tg2x + 1). 2 . . 11) Tmnghi^e.m ri^engcu'a phuong trnh: xy0 + 2y = xyy0 thoa' ma~n di^eu ki^e.n d^au y(−1) = 1. . . . HD gia’i: Vi^et phuong trnh la.i: x(1 − y)y0 = −2y; do y(−1) = 1 n^en y 6≡ 0.D- ua v^e . . 1 − y dx phuong trnh tach bi^en: dy = −2 y x . . 1 tch ph^ant^o'ng quat: x2ye−y = C. Thay di^eu ki^e.n vaota duo. c C = . V^a. y tch ph^an e ri^engc^an tmla: x2ye1−y = 1. . . 12) Bang cach da.t y = ux, ha~y gia'i phuong trnh: xdy − ydx − px2 − y2dx = 0. (x > 0) . . . . HD gia’i: D- a. t y = ux; du = udx + xdu thay vaophuong trnhvagia'n uoc x: xdu − √ . . . 1 − u2dx = 0. Ro~ rang u − ±1 langhi^e.m. khi u 6≡ ±1 dua phuong trnhv^e tach bi^en: du dx = . TPTQ: arcsin u − ln x = C (do x > 0). 1 − u2 x . . y V^a. y NTQ cu'a phuong trnh: y = ±x; arcsin = ln x + C. x . . 13) Tmnghi^e.m ri^engcu'a phuong trnh: xy0 = px2 − y2 + y thoa' ma~n di^eu ki^e.n d^au y(1) = 0. HD gia’i: r p y2 y xy0 = x2 − y2 + y ⇐⇒ y0 = 1 − + x2 x y da. t u = hay y = ux suy ra y0 = xu0 + u x . . √ du dx phuong trnh thanh: xu0 = 1 − u2 ⇐⇒ √ = 1 − u2 x
- 4 www.VNMATH.com ⇐⇒ arcsin u = ln Cx thoa' ma~n di^eu ki^e.n d^au y(1) = 0 khi C = 1. V^a. y nghi^e.m y = ±x. . . 14) Tmnghi^e.m ri^engcu'a phuong trnh: y0 sin x = y ln y π thoa' ma~n di^eu ki^e.n d^au y( ) = e. 2 HD gia’i: dy dx y0 sin x = y ln y ⇐⇒ = y ln y sin x x x C tan ⇐⇒ ln y = C tan ⇐⇒ y = e 2 2 x π tan thoa' ma~n di^eu ki^e.n d^au y( ) = e khi C = 1. V^a. y y = e 2 . 2 . . 15) Tmnghi^e.m ri^engcu'a phuong trnh: (x + y + 1)dx + (2x + 2y − 1)dy = 0 thoa' ma~n di^eu ki^e.n d^au y(0) = 1. HD gia’i: D- a. t x + y = z =⇒ dy = dz − dx . . phuong trnhthanh: (2 − z)dx + (2z − 1)dz = 0; gia'i ra x − 2z − 3 ln |z − 2| = C. V^a. y x + 2y + 3 ln |x + y − 2| = C thoa' ma~n di^eu ki^e.n d^au y(0) = 1 khi C = 2. 1 16) Bang cach da.t y = r^oi da.t z = ux,ha~y gia'i . . z phuong trnh: (x2y2 − 1)dy + 2xy3dx = 0 1 . . . . HD gia’i: D- a. t y = duo. c: (z2 − x2)dz + 2zxdx = 0; r^oi da. t z = ux, duo. c z (u2 − 1)(udx + xdu) + 2udx = 0 dx u2 − 1 ⇐⇒ + du = 0 x u3 + u u2 + 1 x(u2 + 1) ⇐⇒ ln |x| + ln = ln C ⇐⇒ = C |u| u 1 . . thay u = duo. c nghi^e.m 1 + x2y2 = Cy. xy . . 17) Tmnghi^e.m t^o'ng quat cu'a phuong trnhsau: y0 − xy = x + x3 HD gia’i: . . D- ^aylaphuong trnh tuy^en tnh c^ap 1 vaconghi^e.m t^o'ng quat la 2 x2 x y = Ce 2 . + 1 2 .
- www.VNMATH.com 5 . . 18) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 − y = y2. . . HD gia’i: D- ^aylaphuong trnhtach bi^en vaconghi^e.m t^o'ng quat la y ln | | = x + C. y + 1 . . y 19) Tmnghi^e.m cu'a cac phuong trnhsau: y0 + = ex x HD gia’i: . . C ex D- ^aylaphuong trnh tuy^en tnh c^ap 1 vaconghi^e.m t^o'ng quat la y = + ex − . x x . . 20) Tmnghi^e.m cu'a cac phuong trnhsau: y0 − y = y3. . . HD gia’i: D- ^aylaphuong trnhtach bi^en vaconghi^e.m t^o'ng quat la C + x = ln |y| − arctgy. . . y y . π 21) Gia'i phuong trnh: y0 = + sin , voi y(1) = x x 2 . . . HD gia’i: y = zx ⇒ y0 = z0x + z, phuong trnh tro' thanh: dz dx z z z0x = sin x ⇔ = ⇔ ln |tg | = ln |x| + ln C ⇔ tg = Cx sin z x 2 2 y π V^a. y nghi^e.m t^o'ng quat: tg = Cx; y(1) = ⇒ C = 1. 2x 2 y V^a. y: tg = x. 2x . . y y 22) Gia'i phuong trnh: (x − y cos )dx + x cos dy = 0 x x y . . . . . HD gia’i: D- a. t = z ⇒ y0 = z0x + z phuong trnh duo. c dua v^e da.ng: x Z dx x cos z.z0 + 1 = 0 ⇔ cos zdz = − + C ⇔ sin z = − ln |x| + C x y V^a. y TPTQ: sin = − ln |x| + C x . . 23) Gia'i phuong trnh: (y02 − 1)x2y2 + y0(x4 − y4) = 0 . . . . HD gia’i: Laphuong trnh da' ng c^ap nhung gia'i khaphuc ta.p.
- 6 www.VNMATH.com . . . y2 x2 Xem phuong trnh b^a. c hai d^oi voi y0: 4 = (x4 + y4)2 ⇒ y0 = ; y0 = − . 1 x2 2 y2 . ' x 3 3 Tu docohai ho. nghi^e.m t^ong quat: y = ; x + y = C2 C1x + 1 . . 24) Gia'i phuong trnh: y2 + x2y0 = xyy0 y2 Vi^et phu.o.ng trnhlai 0 x2 d^aylaphu.o.ng trnhthu^an nh^at, gia'i HD gia’i: . y = y x − 1 . . ' 2 y ra duo. c nghi^e.m t^ong quat: y = Cxe x . . 25) Tmnghi^e.m ri^engcu'a phuong trnh: (x + y − 2)dx + (x − y + 4)dy = 0 thoa' ma~n di^eu ki^e.n d^au y(1) = 0. ( x = u − 1 . . . . HD gia’i: D- a. t thay vaophuong trnh duo. c: y = v + 3. . . (u + v)du + (u − v)dv = 0, d^aylaphuong trnhthu^an nh^at cotch ph^ant^o'ng quat la: u2 + 2uv − v2 = C. . . V^a. y tch ph^ant^o'ng quat cu'a phuong trnhban d^au la: x2 + 2xy − y2 − 4x + 8y = C . . 26) Gia'i phuong trnh (x + y − 2)dx + (x − y + 4)dy = 0. ( x = X − 1 . . HD gia’i: D- a. t , phuong trnh thanh: y = Y + 3 (X + Y )dX + (X − Y )dY = 0 . . . dX 1 − u da. t Y = uX dua phuong trnh v^e + du = 0. X 1 + 2u − u2 Gia'i ra X2(1 + 2u − u2) = C hay x2 + 2xy − y2 − 4x + 8y = C. . . 2xy 27) Tmtch ph^ant^o'ng quat cu'a phuong trnhsau: b) y0 = . x2 − y2 . . y . . HD gia’i: D- ^aylaphuong trnhda' ng c^ap, ta da. t z = . Khi dophuong trnhtr^en z . z(1 + z2) 1 2z dx . . tro' thanh xz0 = . Hay ( − )dz = . Suy ra nghi^e.m cu'a phuong trnh 1 − z2 z 1 + z2 x z nayla = Cx, C 6= 0. 1 + z2 ' . . ~ 2 2 V^a. y nghi^e.m cua phuong trnh da cho la x + y = C1y, C1 6= 0. . . 2x + y − 1 28) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 = . 4x + 2y + 5 . . . HD gia’i: D- a. t u = 2x + y phuong trnh dua v^e da.ng du 5u + 9 = . dx 2u + 5
- www.VNMATH.com 7 . . . . Gia'i phuong trnhnayta duo. c nghi^e.m 10u + 7 ln |5u + 9| = 25x + C. . . V^a. y nghi^e.m cu'a phuong trnh da~ cho la 10y + 7 ln |10x + 5y = 9| − 5x = C. . . 29) Tmtch ph^ant^o'ng quat cu'a cac phuong trnhsau: (x − y + 4)dy + (y + x − 2)dx = 0 . . . . . HD gia’i: D- ^aylaphuong trnhdua v^e da.ng da' ng c^ap duo. c bang cach da. t x = . . dv u + v . . . . u + 1, y = v − 3, ta duo. c = . Gia'i phuong trnhta conghi^e.m cu'a phuong du −u + v trnhla v2 − 2uv − v2 = C. ' . . ~ 2 2 V^a. y nghi^e.m cua phuong trnh da cho la y − x − 2xy − 8y + 4x = C1. a) Tmmi^en matrong donghi^em cu'a baitoan Cauchy cu'a phu.o.ng trnh 30) . √ sau d^ayt^on ta.i vaduy nh^at y0 = x − y. . . b) Tmtch ph^ant^o'ng quat cu'a cac phuong trnhsau: (x2 − y2)dy − 2xydx = 0. HD gia’i: a) Baitoan Cauchy coduy nh^at nghi^e.m trong mi^en . D = {(x, y) ∈ R2|x − y ≥ δ} voi δ > 0 tuyy. . . . dy xy . . b) D- ua phuong trnhv^e da.ng = .D- ^aylaphuong trnhda' ng c^ap, ta da. t dx x2 − y2 y . . . z = . Khi dophuong trnh tr^entro' thanh x z(1 + z2) xz0 = . 1 − z2 1 2z dx Hay ( − )dz = . z 1 + z2 x . . z Suy ra nghi^e.m cu'a phuong trnh nayla = Cx, C 6= 0. 1 + z2 ' . . ~ 2 2 V^a. y nghi^e.m cua phuong trnh da cho la x + y = C1y, C1 6= 0. . . 31) a) Chung minh rang h^e. cac vecto {e2x, xe2x, x2} lah^e. d^o.c l^a.p tuy^en tnh. . . b) Tmtch ph^ant^o'ng quat cu'a phuong trnhsau: (x − y)dy − (x + y)dx = 0; HD gia’i: a) Dungdi.nh ngh~a ki^e'm tra h^e. d^o. c l^a. p tuy^en tnh . . . . x + y . . b) D- ua phuong trnh v^e da.ng y0 = .D- ^aylaphuong trnhda' ng c^ap, ta da. t x − y y . . . z = . Khi dophuong trnh tr^entro' thanh x 1 + z2 xz0 = . 1 − z . . . . Gia'i phuong trnhnayta duo. c p arctg y x2 + y2 = Ce x . . . 32) a) Chung minh rang h^e. cac vecto {cos2 2x, sin2 2x, 2} lah^e. phu. thu^o.c tuy^en tnh. . Tnh di.nh thuc Wronski cu'a chung. . . b) Tmtch ph^ant^o'ng quat cu'a phuong trnhsau: (x − 2y + 1)dy − (x + y)dx = 0.
- 8 www.VNMATH.com HD gia’i: a) H^e. nayphu. thu^o. c tuy^en tnh v 2 cos2 2x + 2 sin2 2x − 2 = 0. . . . . . b) Phuong trnhnaycoth^e' dua v^e da.ng da' ng c^ap, ta duo. c x + y y0 = . x − 2y + 1 1 1 . . . D- a. t u = x − , v = y + , khi dophuong trnh tr^entro' thanh 3 3 u + v v0 = . u − 2v √ . . . . √ √1 arctg( 2 u ) Gia'i phuong trnhnayta duoc 2 2 2 v . u + 2√v = Ce . √1 3x−1 p 2 2 arctg( 2 3y+1 ) Hay (3x − 1) + 2(3y + 1) = C1e 2 . . . 33) Gia'i phuong trnh: y2 + x2y0 = xyy0 . . HD gia’i: Phuong trnhthu^an nh^at: da. t y = zx → y0 = z0x + z . . . z − 1 dx Phuong trnh tro' thanh dz = → z − ln |z| = ln |x| + C z x y y − ln | | = ln |x| + C x x . . 34) Gia'i phuong trnh y2 + x2y0 = xyy0. y2 Vi^et phu.o.ng trnhlai 0 x2 d^aylaphu.o.ng trnhthu^an nh^at, gia'i HD gia’i: . y = y x − 1 . . ' 2 y ra duo. c nghi^e.m t^ong quat: y = Cxe x . . 35) Gia'i phuong trnh: y” cos y + (y0)2 sin y = y0 HD gia’i: y = C : hang lam^o. t nghi^e.m. dp y 6= C (hang). D- a. t y0 = p ⇒ y” = p (hamtheo y) dy dp . . thay vao(2): cos y + p sin y = 1: phuong trnhtuy^en tnh. dy . . Phuong trnh thu^an nh^at conghi^e.m t^o'ng quat: p = C cos y. . . bi^en thi^enhang s^o duo. c C = tgy + C1. . dy dy tu do p = = sin y + C1 cos y ⇔ = dx dx sin y + C1 cos y y r 1 1 tg + 1 + − 2 1 2 C1 C1 tch ph^andid^en: ln = x + C2 p 2 r C1 + 1 y 1 1 −tg + 1 + 2 + 2 C1 C1 . . 1 36) Gia'i phuong trnh: y0 + = 0 2x − y2 1 . . HD gia’i: Coi x = x(y) lahamcu'a y ta co: y0 = thay vaophuong trnh: x0
- www.VNMATH.com 9 1 1 . . + = 0 ⇔ x0 + 2x = y2 : phuong trnh tuy^en tnh. x0 2x − y2 . . Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at: x = Ce−2y 1 1 1 Bi^en thi^enhang s^o: C0(y) = y2e2y ⇒ C(y) = y2e2y − ye2y + e2y + C 2 2 4 . . 1 1 1 V^a. y nghi^e.m t^o'ng quat cu'a phuong trnh: x = Ce−2y + y2 − y + 2 2 4 . . 37) Gia'i phuong trnh: xy” = y0 + x2 . HD gia’i: D- a. t y0 = p, (1) tro' thanh: xp0 − p = x2 tuy^en tnh . . Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at: p = Cx Bi^en thi^enhang s^o → C(x) = x + C1 dy x3 x2 Suy ra: = x(x + C ) → y = + C . + C dx 1 3 1 2 2 . . 38) Gia'i phuong trnh: y02 + yy” = yy0 . . . . . . . dp HD gia’i: D- a. t p = y0(p 6= 0), phuong trnh tuong duong voi: p2 + yp = yp dy dp . . . dp p ⇔ p + y = y, xet y 6= 0 dua phuong trnh v^e: + = 1 (tuy^en tnh) dy dy y . . C NTQ cu'a phuong trnhthu^an nh^at: p = , bi^en thi^enhang s^o y y2 ⇒ C(y) = + C 2 1 2 2 Nhu. v^ay: y + 2C1 dy y + 2C1 2ydy . p = ⇒ = ⇒ 2 = dx 2y dx 2y y + 2C1 2 x ⇒ y = A1e + A2. 0 0 0 0 x x 2 x Chuy: V^e trai (yy ) = yy ⇔ yy = C1e ⇔ ydy = C1e dx ⇔ y = 2C1e + C2 . . . 39) Gia'i phuong trnh: yey = y0(y3 + 2xey) voi y(0) = −1 1 . . 2 HD gia’i: y0 = bi^en d^o'i phuong trnh v^e: x0 − x = y2e−y x x0y y Nghi^e.m t^o'ng quat: x = y2(C − e−y) y(0) = −1 ⇒ C = e. V^a. y x = y2(e − e−y) . . 40) Gia'i phuong trnh: xy” = y0 + x . . . 1 HD gia’i: D- a. t y0 = p; phuong trnh tro' thanh: p0 − p = 1 x ' Nghi^e.m t^ong quat: p = Cx bi^en thi^enhang s^o: C = ln |x| + C1
- 10 www.VNMATH.com dy Z ⇒ p = = (ln |x| + C )x ⇒ y = (ln |x| + C )xdx + C dx 1 1 2 x2 x2 = C x2 + ln |x| − + C 1 2 4 2 . . 41) Gia'i phuong trnh: y0 + xy = x3 2 ' . . − x HD gia’i: Nghi^e.n t^ong quat cu'a phuong trnh thu^an nh^at y = Ce 2 2 2 − x bi^en thi^enhang s^o: C(x) = (x − 2)e 2 + ε 2 ' − x 2 V^a. y nghi^e.m t^ong quat: y = εe 2 + x − 2. . . 42) Gia'i phuong trnh: (x2 − y)dx + xdy = 0 . . . . HD gia’i: Phuong trnhvi^et la.i: xy0 −y = −x2, phuong trnhthu^an nh^at: xy0 −y = 0 conghi^e.m t^o'ng quat: y = Cx bi^en thi^enhang s^o suy ra C = −x + ε V^a. y nghi^e.m t^o'ng quat : y = −x2 + εx . . 2 3 . 43) Gia'i phuong trnh: y0 − y = voi y(1) = 1 x x2 . . 3 1 HD gia’i: Phuong trnhtuy^en tnh: y = Cx2; C0 = ⇒ C = − + ε x4 x3 1 y = εx2 − ; y(1) = 1 ⇒ ε = 2 x 1 V^a. y nghi^e.m t^o'ng quat: y = 2x2 − x . . 44) Gia'i phuong trnh: (x + 1)(y0 + y2) = −y . . 1 HD gia’i: Xet y 6= 0, bi^en d^o'i phuong trnhv^e da.ng y0 + .y = −y2 x + 1 1 z0 . . . 1 D- a. t = z ⇒ y0 = − = −y2z0 dua phuong trnh v^e z0 − .z = 1. y z2 x + 1 ' ' . . Nghi^e.m t^ong quat cua phuong trnhthu^an nh^at: z = C1(x + 1) bi^en thi^enhang s^o C1 = ln |x + 1| + ε. V^a. y nghi^e.m: z = (x + 1)(ln |x + 1| + ε) ngoaira y = 0 cu~ng langhi^e.m. 1 V^a. y nghi^e.m t^o'ng quat: y = va y = 0 nghi^e.m kdi (x + 1)(ln |x + 1| + ε) . . 1 45) Gia'i phuong trnh: 2xy0 + y = 1 − x . . . 1 1 . . HD gia’i: D- ua phuong trnhv^e da.ng y0 + y = phuong trnhtuy^en 2x 2x(1 − x) tnh c^ap 1
- www.VNMATH.com 11 C Nghi^e.m t^o'ng quat: y = √ , bi^en thi^enhang s^o: x √ √ x 1 x + 1 C0(x) = ⇒ C = ln |√ | + ε 2x(1 − x) 2 x − 1 √ 1 1 x + 1 V^a. y nghi^e.m t^o'ng quat: y = √ ln |√ | + ε x 2 x − 1 . . 46) Gia'i phuong trnh: xy0 − y = x2 sin x y . . HD gia’i: y0 − = x sin x, phuong trnhtuy^en tnh. NTQ: y = Cx bi^en thi^enhang x s^o: Nghi^e.m t^o'ng quat: y = (C − cos x)x . . 47) Gia'i phuong trnh: y0 cos2 x + y = tgx thoa' y(0) = 0 . . HD gia’i: Phuong trnhtuy^en tnh → NTQ y = Ce−tgx; y = tgx − 1 (m^o. t nghi^e.m ri^eng) ⇒ NTQ: y = Ce−tgx + tgx − 1 y(0) = 0 ⇒ C = 1. V^a. y nghi^e.m ri^engc^an tm: y = tgx − 1 + e−tgx. . . √ 48) Gia'i phuong trnh: y0 1 − x2 + y = arcsin x thoa' y(0) = 0 . . HD gia’i: Nghi^e.m t^o'ng quat cu'a phuong trnhtuy^en tnh thu^an nh^at: y = Ce−arcsinx D^e~ th^ay nghi^e.m ri^eng: y = arcsinx − 1 ⇒ NTQ: y = Ce−arcsinx + arcsinx − 1 y(0) = 0 ⇒ C = 1 ⇒ nghi^e.m ri^engc^an tm: y = e−arcsinx + arcsinx − 1 . . 1 49) Tmnghi^e.m ri^engcu'a phuong trnh: y0 = 2x − y2 thoa' ma~n di^eu ki^e.n d^au y(1) = 0. 1 . . HD gia’i: Xem x la^a'n ham,thay y0 = , phuong trnh thanh x0 1 1 = ⇐⇒ x0 − 2x = −y2 x0 2x − y2 . . . . D- ^aylaphuong trnhtuy^en tnh c^ap m^o. t, nghi^e.m t^o'ng quat cu'a phuong trnhtuy^en . . . . . tnh thu^an nh^at tuong ung la x = Ce−2y. Bi^en thi^enhang s^o duo. c NTQ: y2 y 1 x = Ce−2y + − + 2 2 4 3 thoa' ma~n di^eu ki^e.n d^au y(1) = 0 khi C = . 4 3 y2 y 1 V^a. y nghi^e.m tho'a ma~n di^eu ki^e.n d^au: x = e−2y + − + . 4 2 2 4
- 12 www.VNMATH.com . . z . . 50) Gia'i phuong trnhsau d^ay, bi^et rang sau khi da.t y = , ta nh^a.n duo. c x2 . . 1 m^o.t phuong trnhvi ph^anc^ap hai com^o.t nghi^e.m ri^eng y∗ = ex: 2 x2y00 + 4xy0 + (x2 + 2)y = ex. z0x − 2z z00x2 − 4z0x + 6z . . HD gia’i: D- a. t y = zx2 =⇒ y0 = ; y00 = . Phuong trnhthanh x3 x4 ex . . : z00 + z = ex, com^o. t nghi^e.m ri^engla y∗ = , NTQ cu'a phuong trnhthu^an nh^at: 2 ' . . z = C1 cos x + C2 sin x. V^a. y NTQ cua phuong trnh ban d^au la: cos x sin x ex y = C + C + 1 x2 2 x2 2x2 . . 51) Tmnghi^e.m ri^engcu'a phuong trnh: yey = y0(y3 + 2xey) thoa' ma~n di^eu ki^e.n d^au y(0) = −1. 1 . . 2 HD gia’i: Xem x la^a'n ham,thay y0 = , phuong trnhthanh x0 − x = y2e−y. x0 y . . . . . C NTQ cu'a phuong trnhtuy^en tnh thu^an nh^at tuong ung la x = ; bi^en thi^enhang y . . . C 1 s^o duo. c C(y) = −e−y + C. Nhu v^a. y NTQ la x = − . Thay di^eu ki^e.n d^au xac di.nh y yey . . 1 . duo. c C = . Tu doKL. e . . 52) Tmnghi^e.m cu'a phuong trnh y0 − y = cos x − sin x. tho'a di^eu ki^e.n y bi. cha.n khi x → ∞ . . HD gia’i: Gia'i phuong trnh tuy^en tnh ra y = Cex + sin x tho'a di^eu ki^e.n y bi. cha. n khi x → ∞ khi C = 0 . . 53) Tmnghi^e.m ri^engcu'a phuong trnh: y0 + sin y + x cos y + x = 0 π thoa' ma~n di^eu ki^e.n d^au y(0) = . 2 HD gia’i: y y y y0 + sin y + x cos y + x = 0 ⇐⇒ y0 + 2 sin cos + x.2 cos2 = 0 2 2 2 y0 y ⇐⇒ y + tan + x = 0 2 cos2 2 2 y y0 dat 0 , phu.o.ng trnhthanhphu.o.ng trnhtuy^en tnh . z = tan =⇒ z = y 2 2 cos2 2 z0 + z = −x. Gia'i ra: z = 1 − x + Ce−x π thoa' ma~n di^eu ki^e.n d^au y(0) = khi C = 0. V^a. y nghi^e.m ri^eng y = 2 arctan(1 − x). 2
- www.VNMATH.com 13 . . x 54) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 − x tan y = cos y . . . HD gia’i: D- a. t z = sin y, khi dophuong trnhda~ cho tro' thanh z0 − xz = x. D- ^ayla . . ' x2 phuong trnh tuy^en tnh c^ap 1 vaconghi^e.m t^ong quat la z = Ce 2 − 1. . . x2 V^a. y nghi^e.m cu'a phuong trnh da~ cho la sin y = z = Ce 2 − 1 . . 55) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 − xy = x HD gia’i: - . . ' 1 x2 D^aylaphuong trnh tuy^en tnh c^ap 1 vaconghi^e.m t^ong quat la y = Ce 2 − 1. . . y √ 56) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 + = x y. x . . HD gia’i: D- ^aylaphuong trnhBernoulli vaconghi^e.m t^o'ng quat la √ C 1 y = √ + x2. x 5 . . y 57) Tmnghi^e.m cu'a cac phuong trnhsau: y0 − = x3 x HD gia’i: . . D- ^aylaphuong trnh tuy^en tnh c^ap 1 vaconghi^e.m t^o'ng quat la 1 y = Cx + x4. 3 . . 58) Tmnghi^e.m cu'a cac phuong trnhsau: y0 − y = y2. HD gia’i: . . D- ^aylaphuong trnh Bernoulli vaconghi^e.m t^o'ng quat la 1 y2 = . Ce−2x − 1 . . y 59) Tmnghi^e.m cu'a cac phuong trnhsau: y0 + = sin x x HD gia’i: . . D- ^aylaphuong trnh tuy^en tnh c^ap 1 vaconghi^e.m t^o'ng quat la C sin x y = + − cos x. x x
- 14 www.VNMATH.com . . √ 60) Tmnghi^e.m cu'a cac phuong trnhsau: y0 − y = x y. HD gia’i: . . D- ^aylaphuong trnh Bernoulli vaconghi^e.m t^o'ng quat la √ 1 x y = Ce 2 − x − 2. . . 2 61) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 + 2xy = xe−x HD gia’i: D- ^aylaphu.o.ng trnh vi ph^antuy^en tnh c^ap 1. 2 x 2 Nghi^e.m t^o'ng quat la y = (C + )e−x . 2 . . y √ 62) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 − 4 = x y. x . . HD gia’i: D- ^aylaphuong trnhBernoulli vaconghi^e.m la √ 1 y = ln x + Cx2. 2 . . 63) a) Tmmi^en matrong donghi^e.m cu'a baitoan Cauchy cu'a phuong trnhsau d^ayt^on ta.i vaduy nh^at y0 = y + 3x. 1 y” − y0 = x b) Tmnghi^e.m cu'a baitoan Cauchy sau d^ay x y(x = 1) = 1 va` y0(x = 1) = 2. HD gia’i: . . a) D- ^aylaphuong trnhtuy^en tnh c^ap 1 tho'a di.nh lydi^eu ki^e.n t^on ta.i duy nh^at nghi^e.m tr^en R2. . . y0 . . b) Gia'i phuong trnh y” − = x, ta duo. c nghi^e.m t^o'ng quat x x2 y = C + C x + . 1 2 2 V^a. y nghi^e.m cu'a baitoan Cauchy la 1 x2 y = − + x + . 2 2 . . 64) Tmnghi^e.m cu'a phuong trnhsau: y0 + ytgx = cos x HD gia’i: D- ^aylaphu.o.ng trnh vi ph^antuy^en tnh c^ap 1. Nghi^e.m t^o'ng quat la: y = (C + x) cos x.
- www.VNMATH.com 15 . . y ex 65) Tmnghi^e.m cu'a phuong trnhsau: y0 + = x( )y2. x ex + 1 HD gia’i: . . . . D- ^aylaphuong trnhvi ph^anBernoulli vaconghi^e.m t^o'ng quat cu'a phuong trnhla 1 y = . Cx − x ln(ex + 1) . . 66) Gia'i phuong trnh: (x + 1)y” + x(y0)2 = y0 . . . . . . HD gia’i: D- a. t y0 = p, phuong trnh tro' thanhphuong trnh Bernouili (voi x 6= −1) 1 x p0 − p = − p2 (∗) x + 1 x + 1 . . . D- a. t z = p−1 6= 0, dua (∗) v^e phuong trnh tuy^en tnh c^ap m^o. t: 1 x z0 + z = 1 + x x + 1 . . C Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at: z = x + 1 2 . . x + C1 1 2(x + 1) Bi^en thi^enhang s^o cu^oi cungduo. c: z = ⇒ y0 = = 2(x + 1) z x2 + C . . 1 Suy ra nghi^e.m t^o'ng quat cu'a phuong trnh: 2 x ln |x2 + C | + √ arctg √ + C nˆe´u C > 0 1 2 1 C1 C1√ 1 x − −C 2 √ √ 1 ´ ln |x + C1| + ln | | + C2 nˆeu C1 < 0 −C1 x + −C1 Chuy y = C laNKD . . 67) Gia'i phuong trnh: x2y0 = y(x + y) 1 1 . . HD gia’i: x2y0 = y(x + y) ⇔ y0 − = y2 : phuong trnhBernouilli y x2 1 1 D- a. t z = y−1 (y 6= 0) : −z0 − z = . . . x x2 NTQ cu'a phuong trnhthu^an nh^at: z = Cx 1 1 bi^en thi^enhang s^o C: C(x) = ε − . V^a. y z = x(ε − ) 2x2 2x2 2x V^a. y nghi^e.m t^o'ng quat la: y = εx2 − 1 . . 68) Gia'i phuong trnh: yy” − (y0)2 = y3 1 y(0) = − thoa' 2 y0(0) = 0
- 16 www.VNMATH.com D- at 0 00 0 thay vaophu.o.ng trnh HD gia’i: . y = p(y); y = p.py dp py − p2 = y3, dy . . . da. t ti^ep: p(y) = y.z(y) dua phuong trnh v^e dz 1 dy = ⇒ z2 = 2(y + C ) ⇔ = yp|2y + C| dy z 1 dx 1 . Do di^eu ki^e.n y(0) = − ; y0(0) = 0 ⇒ C = 1. Tu dosuy ra: 2 p dy p |2y + 1| − 1 = y |2y + 1| ⇒ ln = x + C2. dx p|2y + 1| + 1 1 do y(0) = − ⇒ C = 0. 2 2 p|2y + 1| − 1 V^a. y nghi^e.m ri^engc^an tmthoa' : ln = x. p|2y + 1| + 1 √ . . 2y x 69) Gia'i phuong trnh: ydx + 2xdy = dy thoa' di^eu ki^e.n y(0) = π cos2 y - . . . 0 2 2 1 HD gia’i: Dua phuong trnh v^e da.ng x + x = .x 2 (Bernoulli) (∗) y cos2 y - 1 0 0 1 − 1 0 Da. t z = x 2 ta co z = x + x 2 x thay vao (∗) 2 1 1 z0 + z = y cos2 y c Nghi^e.m t^o'ng quat: z = bi^en thi^enhang s^o: y y C0 = ⇒ C(y) = ytgy + ln | cos y| + ε cos2 y 1 ε V^a. y Z = tgy + ln | cos y| + y y . . 1 ε √ VaTPTQ cu'a phuong trnh: tgy + ln | cos y| + = x y y 1 √ y(0) = π ⇒ ε = 0 v^a. y TPR : tgy + ln | cos y| = x y . . 70) Gia'i phuong trnh: xydy = (y2 + x)dx . . HD gia’i: Do y = 0 kh^ongpha'i langhi^e.m, chia hai v^e cho xy bi^en d^o'i phuong trnh 1 . . . v^e da.ng: y0 − y = y−1 Bernouilli; D- a. t z = y2 dua phuong trnh v^e da.ng: x 2 z0 − z = 2 → z = −2x + Cx2 x V^a. y TPTQ: y2 = −2x + Cx2 . . √ 71) Gia'i phuong trnh: (y + xy)dx = xdy
- www.VNMATH.com 17 - . . . 0 1 1 1 HD gia’i: Dua phuong trnh v^e da.ng y − y = √ .y 2 ; x 6= 0 x x - 1 0 1 1 . . √ Da. t z = y 2 : z − z = √ phuong trnh tuy^en tnh gia'i ra z = x(ln x + C) 2x x V^a. y nghi^e.m t^o'ng quat: y = x(ln x + C)2 . . √ 72) Gia'i phuong trnh: xy0 − 2x2 y = 4y . . √ 1 HD gia’i: Phuong trnh Bernouilli, da. t z = y1−α = y ⇒ z0 = √ 2 y . . . 4 phuong trnh tro' thanh: z0 − z = 2x → NTQ z = Cx4 − x2 x V^a. y nghi^e.m t^o'ng quat: y = (Cx2 − 1)2x4. . . 73) Gia'i phuong trnh: 2x2y0 = y2(2xy0 − y) HD gia’i: Xem x lahamtheo bi^en y : x0y3 − 2xy2 = −2x2 Bernouilli 1 . . . 2z 2 D- a. t z = , phuong trnhtro' thanh: z0 + = → TPTQ: y2 = x ln Cy2, nghi^e.m x y y3 kydi. y = 0. . . 74) Tmnghi^e.m ri^engcu'a phuong trnh: x2y0 = y(x + y) thoa' ma~n di^eu ki^e.n d^au y(−2) = −4. . . . . . HD gia’i: Do y(−2) = −4 n^en y 6≡ 0.D- ua phuong trnhv^e phuong trnhBernouilli: y2 1 1 0 . Ti^ep tuc dat −1 du.a phu.o.ng trnh v^e PT tuy^en tnh 0 . y − 1y = 2 . . z = y z + z = − 2 x . . . . . x .x. NTQ cu'a phuong trnhthu^an nh^at tuong ung: z = Cx, bi^en thi^enhang s^o duo. c 1 . . . 2x C(x) = Cx − . Nhu v^a. y nghi^e.m cu'a phuong trnhban d^au la: y = .D- i^eu ki^e.n 2x Cx2 − 1 1 4x d^au cho C = . V^a. y nghi^e.m ri^engc^an tmla y = 2 x2 − 1 . . 75) Gia'i phuong trnh: y0 − xy = −xy3 . . . . . . HD gia’i: Phuong trnh: y0 − xy = −xy3 laphuong trnh Bernouilli, gia'i ra duo. c y2(1 + Ce−x) = 1 . . 76) Gia'i phuong trnh: xy0 + y = y2 ln x. . . . . . . HD gia’i: Phuong trnh xy0 + y = y2 ln x laphuong trnhBernouilli, gia'i ra duo. c 1 y = . 1 + Cx + ln x . . y √ 77) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 − 4 = x y x
- 18 www.VNMATH.com . . √ . . . HD gia’i: D- ^aylaphuong trnh Bernoulli, bang cach da. t z = y ta dua phuong 2 x trnhv^e da.ng z0 − z = vaconghi^e.m t^o'ng quat la x 2 1 z = x2( ln |x| + C). 2 . . V^a. y nghi^e.m t^o'ng quat cu'a phuong trnh la 1 y = x4( ln |x| + C)2. 2 . . y 78) Tmnghi^e.m t^o'ng quat cu'a cac phuong trnhsau: y0 + = y2xtgx. x . . HD gia’i: D- ^aylaphuong trnhBernoulli vaconghi^e.m t^o'ng quat la 1 y = . Cx + x ln | cos x| . . 79) Gia'i phuong trnh: y2dx + (2xy + 3)dy = 0 ∂P ∂Q HD gia’i: P (x, y) = y2,Q(x, y) = 2xy + 3; = = 2y ∂y ∂x (1) ⇔ d(xy2 + 3y) = 0. V^a. y xy2 + 3y = C . . 80) Gia'i phuong trnh: ex(2 + 2x − y2)dx − yexdy = 0 ∂P ∂Q . . . . . . . HD gia’i: = = −2yex suy ra phuong trnhtuong duong voi: d ex(2x−y2) = ∂y ∂x 0. V^a. y ex(2x − y2) = C. . . 2 3 2 p 81) Gia'i phuong trnh: (y + 1) 2 dx + (y + 3xy 1 + y2)dy = 0 2 3 2 p ∂P ∂Q p HD gia’i: p = (y + 1) 2 ; Q = y + 3xy 1 + y2 ⇒ = = 3y 1 + y2 (∗) ∂y ∂x Suy ra nghi^e.m t^o'ng quat cu'a (∗) la: x y Z Z P (x, 0)dx + Q(x, y)dy = C 0 0 3 y 2 3 ⇔ + x(1 + y ) 2 = C 3 . . 82) Gia'i phuong trnh: (y cos2 x − sin x)dy = y cos x(y sin x + 1)dx ∂P ∂Q HD gia’i: = = y sin 2x + cos x ∂y ∂x
- www.VNMATH.com 19 NTQ: x y 2 R R y 2 P (x, y0)dx + Q(x, y)dy = C ⇔ y sin x − cos x = C x0=0 y0=0 2 . . 83) Gia'i phuong trnh: (2x + 3x2y)dx = (3y2 − x3)dy . . HD gia’i: Phuong trnh vi ph^antoanph^an: x2 + x3y − y3 = C . . x (x2 + 1) cos y 84) Gia'i phuong trnh: ( + 2)dx − dy = 0 sin y 2 sin2 y ∂P ∂Q x cos y HD gia’i: = = − ∂y ∂x sin2 y TPTQ: x y Z π Z x2 (x2 + 1) 1 P (x, )dx + Q(x, y)dy = C ⇔ + 2x − ( − 1) = C 2 2 2 sin y 0 π 2 . . 85) Gia'i phuong trnh: (y + ex sin y)dx + (x + ex cos y)dy = 0 . . HD gia’i: Phuong trnh vi ph^antoanph^an, nghi^e.m t^o'ng quat: xy + ex sin y = C. . . 86) Gia'i phuong trnh: (x + sin y)dx + (x cos y + sin y)dy = 0 . . HD gia’i: Phuong trnhvi ph^antoanph^an: NTQ x2 + 2(x sin y − cos y) = C. . . x3 87) Gia'i phuong trnh: 3x2(1 + ln y)dx = (2y − )dy y . . HD gia’i: Phuong trnhvi ph^antoanph^an: Nghi^e.m t^o'ng quat: x3(1 + ln y) − y2 = C . . x3 88) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: 3x2(1 + ln y)dx = (2y − )dy y . . HD gia’i: D- ^aylaphuong trnhvi ph^antoanph^an cotch ph^ant^o'ng quat la: x3(1 + ln y) − y2 = C . . 89) Ha~y tmnghi^e.m t^o'ng quat cu'a phuong trnh: (x + sin y)dx + (x cos y + sin y)dy = 0 HD gia’i: PTVPTP cotch ph^ant^o'ng quat: x2 + 2(x sin y − cos y) = C
- 20 www.VNMATH.com . . 90) Ha~y tmnghi^e.m t^o'ng quat cu'a phuong trnh: 1 y2 x2 1 − dx + − dy = 0 x (x − y)2 (x − y)2 y x xy HD gia’i: PTVPTP cotch ph^ant^o'ng quat: ln + = C y x − y . . 91) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: (sin xy + xy cos xy)dx + x2 cos xydy = 0 . . HD gia’i: Phuong trnhvi ph^antoanph^an conghi^e.m t^o'ng quat la x sin(xy) = C. . . . 92) Ha~y tmthua s^o tch ph^ancu'a phuong trnh: (x + y2)dx − 2xydy = 0 . . suy ra nghi^e.m t^o'ng quat cu'a phuong trnh. . . . 1 HD gia’i: Thua s^o tch ph^ancu'a phuong trnhla µ(x) = . Nh^anhai v^e cu'a x2 . . . y2 phuong trnh cho thua s^o tch ph^anr^oi gia'i ra x = Ce x . . . 93) Gia'i phuong trnh: 2xy ln ydx + (x2 + y2py2 + 1)dy = 0 . . . 1 HD gia’i: D- ^aylaphuong trnh vi ph^antoanph^an, thua s^o tch ph^an: µ(y) = nh^an y . . . . . 2 1 2 3 thua s^o tch ph^anvaohai v^e cu'a phuong trnhr^oi gia'i ra duo. c: x ln y+ (y +1) 2 = 0 3 . . 94) Tmnghi^e.m cu'a phuong trnh (x3 + xy2)dx + (x2y + y3)dy = 0. tho'a di^eu ki^e.n y(0) = 1. . . HD gia’i: D- ^aylaphuong trnhvi ph^antoanph^an NTQ la: x4 + 2x2y2 + y4 = C . tho'a di^eu ki^e.n y(0) = 1 khi C = 1. . . 95) Tmtch ph^ant^o'ng quat cu'a cac phuong trnhsau: a) − 2xydy + (y2 + x2)dx = 0 . . . 1 . . . HD gia’i: Ta tmduo. c thua s^o tch ph^an µ(x) = .D- ua phuong trnhda~ cho v^e x2 da.ng vi ph^antoanph^an. Khi donghi^e.m t^o'ng quat la x2 − y2 = Cx.
- www.VNMATH.com 21 . . 96) a) Chung minh rang h^e. cac vecto {e2x, e−x, cos x} lah^e. d^o.c l^a.p tuy^en tnh. . Tnh di.nh thuc Wronski cu'a chung. b) Tmtch ph^ant^o'ng quat cu'a cac phu.o.ng trnhsau: px2 − ydy − 2x(1 + px2 − y)dx = 0. HD gia’i: a) Dungdi.nh ngh~a ki^e'm tra h^e. d^o. c l^a. p tuy^en tnh. - . x D.inh thuc Wronski W [y1, y2, y3](x) = 3e (3 cos x − sin x). b) D- ^aylaphu.o.ng trnhvi ph^antoanph^an. Tch ph^ant^o'ng quat cu'a phu.o.ng trnh la 2 2 2 3 x + (x − y) 2 = C 3 . . x2 97) Tmtch ph^ant^o'ng quat cu'a cac phuong trnhsau: ( − y2)dy − 2xdx = 0. y . . . 1 . . . HD gia’i: Ta tmduo. c thua s^o tch ph^an µ(x) = .D- ua phuong trnhda~ cho v^e y da.ng vi ph^antoanph^an. Khi donghi^e.m t^o'ng quat la 2x2 + y3 = Cy. . . 98) a) Chung minh rang h^e. cac vecto {ex, e2x, x2} lah^e. d^o.c l^a.p tuy^en tnh. . . b) Tmtch ph^ant^o'ng quat cu'a phuong trnhsau: (x − y)dy + (x + y)dx = 0. HD gia’i: . . a) Ki^e'm tra h^e. phuong trnh lad^o. c l^a. p tuy^en tnh . . . y2 x2 b) D- ^aylaphuong trnh vi ph^antoanph^an n^enta co d(xy − + ) = 0. 2 2 V^a. y tch ph^ant^o'ng quat la x2 − y2 + 2xy = C. . . 99) a) Chung minh rang h^e. cac vecto {1, x, ex} lah^e. d^o.c l^a.p tuy^en tnh. . . b) Tmtch ph^ant^o'ng quat cu'a phuong trnhsau: (x2 − y)dx + xdy = 0 HD gia’i: a) Dungdi.nh ngh~a ki^e'm tra h^e. d^o. c l^a. p tuy^en tnh . . . . 1 . . . . . b) Tmthua s^o tch ph^an,ta duo. c µ(x) = . Phuong trnhda~ cho dua duo. c v^e . . x2 da.ng phuong trnh vi ph^antoanph^an y 1 (1 − )dx + dy = 0. x2 x . . . . Gia'i phuong trnhnayta duo. c y = Cx − x2. . . 100) a) Chung minh rang h^e. cac vecto {e2x, ex, x} lah^e. d^o.c l^a.p tuy^en tnh. . . b) Tmtch ph^ant^o'ng quat cu'a phuong trnhsau: (x − y)dx − (x + y)dy = 0. HD gia’i:
- 22 www.VNMATH.com . . a) Ki^e'm tra h^e. phuong trnh lad^o. c l^a. p tuy^en tnh. . . b) D- ^aylaphuong trnh vi ph^antoanph^an. Suy ra tch ph^ant^o'ng quat coda.ng: x2 + y2 − 2xy = C.
- www.VNMATH.com 1 . . BAI` TAˆ. P PHUONG TR`INH VI PHANˆ (tiˆe´p theo) . . 101) Gia'i phuong trnh: y” + y0 = x + e−x . . . HD gia’i: Phuong trnhda. c trung λ2 + λ = 0 ⇔ λ = 0; λ = −1 . . 1 2 Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at: y = C + C e−x . . 1 2 . . . Tmnghi^e.m ri^engduoi da.ng y = y + y , trong do y , y lacac nghi^e.m tuong ung . . 1 2 1 2 cu'a cac phuong trnh: y” + y0 = x va y” + y0 = e−x ' . . . • V λ1 = 0 langhi^e.m cua phuong trnh da. c trung n^en y1 = x(Ax + B) . . . . 1 Bang phuong phap h^e. s^o b^at di.nh duo. c: y = x2 − x 1 2 ' . . . −x • λ2 = −1 langhi^e.m cua phuong trnh da. c trung n^en: y2 = Axe −x Thay vaovadungh^e. s^o b^at di.nh suy ra: y2 = −xe 1 Cu^oi cungNTQ: y = C + C e−x + x2 − x − xe−x 1 2 2 . . 102) Gia'i phuong trnh: 2y” + 5y0 = 29x sin x . . . 5 HD gia’i: Phuong trnh da. c trung: 2λ2 + 5λ = 0 ⇔ λ = 0, λ = − 1 2 2 5x . . − Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at y = C + C e 2 . . . 1 2 V ±i kh^ongpha'i langhi^e.m cu'a phuong trnhda. c trung n^entmnghi^e.m ri^engda.ng: y = (Ax + B) sin x + (Cx + D) cos x . . . . 185 16 Thay vaophuong trnhduo. c: A = −2; B = ; C = −5; D = − 29 29 . . 103) Gia'i phuong trnh: y” − 2y0 + 5y = x sin 3x . . . HD gia’i: Phuong trnhda. c trung: λ2 − 2λ + 5 = 0 ⇔ λ = 1 − 2i; λ = 1 + 2i . . 1 2 NTQ cu'a phuong trnhthu^an nh^at: y = ex(C cos 2x + C sin 2x) . . 1 . 2 Do ±3i kh^ongpha'i langhi^e.m cu'a phuong trnhda. c trung n^ennghi^e.m ri^engcu'a (2) . . . . duo. c tmduoi da.ng: y = (Ax + B) cos 3x + (Cx + D) sin 3x . . 3 57 1 41 Thay vao(2) ta duo. c: A = ; B = ; C = − ; D = 26 26 13 13 . . 104) Gia'i phuong trnh: y” − 2y0 − 3y = xe4x + x2 . . . 2 HD gia’i: Phuong trnh da. c trung: λ − 2λ − 3 = 0 ⇔ λ1 = −1; λ2 = 3. ' . . −x 3x NTQ cua phuong trnhthu^an nh^at: y = C1e + C2e . ' 0 4x Tmnghi^e.m ri^engda.ng y = y1 + y2 voi y1 langhi^e.m cua y” − 2y − 3y = xe x 6 y = e4x(Ax + B) = e4x − 1 5 25 ' 0 2 con y2 langhi^e.m ri^engcua y” − 2y − 3y = x coda.ng: 2 4 14 y = A x2 + B x + C = − x2 + x − . 2 1 1 1 3 9 27 e4x 6 1 4 14 V^a. y nghi^e.m t^o'ng quat: y = C e−x + C e3x + (x − ) − (x2 − x + ) 1 2 5 5 3 3 9
- 2 www.VNMATH.com . . 105) Gia'i phuong trnh: x2y” − 2y = x3 cos x ' . . 2 bi^et m^o.t nghi^e.m cua phuong trnhthu^an nh^at la y1 = x 2 HD gia’i: Chia 2 v^e cho x2 (x 6= 0): y” − y = x cos x. . . . x2 Tmnghi^e.m ri^engthu hai cu'a phuong trnh thu^an nh^at da.ng: 2 p(x) = 0; q(x) = − . x2 Z Z 1 − R p(x)dx 2 dx 1 y2 = y1 2 e dx = x 4 = − y1 x 3x . . 1 V^a. y nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at la: y = C x2 − C . 1 2 3x ' . . Coi C1,C2 lahamcua x, ap du.ng phuong phap hang s^o bi^en thi^en: 1 C0 x2 + C0 (− ) = 0 1 2 3x 1 C0 2x + C0 ( ) = x cos x 1 2 3x2 cos x sin x C0 = ⇒ C = + K Gia'i ra: 1 3 1 3 1 0 3 3 2 C2 = x cos x ⇒ C2 = x sin x + 3x cos x − 6x sin x + 6 cos x + K2 x2 sin x 1 K V^a. y NTQ: y = − (x3 sin x + 3x2 cos x − 6x sin x + 6 cos x) + K x2 − 2 . 3 3x 1 3x . . 2 cotgx 106) Gia'i phuong trnh: y” + y0 + y = x x . . sin x bi^et m^o.t nghi^e.m cu'a phuong trnhthu^an nh^at la y = 1 x x cotgx . HD gia’i: p(x) = , q(x) = 1, f(x) = . Tmnghi^e.m ri^engthu hai: 2 x 2 1 R sin x x R 2 sin x dx cos x R − p(x)dx R − x dx R y2 = y1 2 e dx = 2 e dx = 2 = − y1 x sin x x sin x x . . sin x cos x NTQ cu'a phuong trnhthu^an nh^at: y = C − C 1 x 2 x sin x cos x C0 + C0 ( ) = 0 Bi^en thi^enhang s^o: 1 x 2 x x cos x − sin x x sin x + cos x cotgx C0 + C0 = 1 x2 2 x2 x cos2 x Z cos2 x Z 1 − sin2 x ⇒ C0 = ⇒ C (x) = dx + K = dx + K 1 sin x 1 sin x 1 sin x 1 Z dx Z x = − sin xdx + K = ln |tg | + cos x + K sin x 1 2 1 0 C2 = cos x → C2 = sin x + K2 V^a. y nghi^e.m t^o'ng quat: y = ··· . . ex 107) Gia'i phuong trnh: y” − 2y0 + y = 1 + x
- www.VNMATH.com 3 . . . HD gia’i: Phuong trnh da. c trung: λ2 − 2λ + 1 = 0 ⇔ λ = 1 . . NTQ cu'a phuong trnhthu^an nh^at: y = ex(C x + C ) . . 1 2 Dungphuong phap bi^en thi^enhang s^o tmnghi^e.m ri^engda.ng: x x y = α1(x).xe + α2(x).e . 0 x 0 x 1 α1(x).xe + α2(x).e = 0 α0 = e−x + ex ⇔ 1 x α0 (x)(ex + xex) + α0 (x).ex = 1 + 0 x 1 2 x α2 = −(xe + 1) V^a. y ( −x α1 = −e + ln |x| −x −x α2 = xe + e − x . Nhu v^a. y nghi^e.m ri^eng: y = (ln |x| − e−x)xex + (xe−x + e−x − x)ex ' x x x Vanghi^e.m t^ong quat: y = e (C1x + C2) + xe ln |x| − xe + 1 . . 108) Gia'i phuong trnh: y” + y0 = xe−x . . . 2 HD gia’i: Phuong trnhda. c trung: λ + λ = 0 ⇔ λ1 = 0; λ2 = −1 ' ' . . −x Nghi^e.m t^ong quat cua phuong trnh thu^an nh^at: y = C1 + C2e Tmnghi^e.m ri^engda.ng: y = xe−x(Ax + B) x2 K^et qua': y = C + C e−x − ( + x)e−x 1 2 2 . . 109) Gia'i phuong trnh: y” − 4y0 + 5y = e2x + cos x . . . 2 HD gia’i: Phuong trnh da. c trung: λ − 4λ + 5 = 0 ⇔ λ1 = 2 − i; λ2 = 2 + i ' 2x Nghi^e.m t^ong quat: y = e (C1 cos x + C2 sin x) . 2x Tmnghi^e.m ri^engda.ng: y = y1 + y2 voi y1 = Ae ; y2 = A cos x + B sin y ⇒ y1 = 1 1 e2x; y = cos x − sin x 2 8 8 1 Nghi^e.m t^o'ng quat: y = e2x(C cos x + C sin x) + e2x + (cos x − sin x) 1 2 8 . . 110) Gia'i phuong trnh: y” + 4y0 + 4y = 1 + e−2x ln x . . . HD gia’i: Phuong trnh da. c trung: λ2 + 4λ + 4 = 0 ⇔ λ = −2 −2x NTQ : y = e (C1x + C2) −2x −2x Tmnghi^e.m ri^engda.ng: y = α1(x).xe + α2e . ( 0 −2x 0 −2x α1(x).xe + α2e = 0 0 −2x −2x 0 −2x −2x α1(e − 2xe ) + α2(−2e ) = 1 + e ln x 1 α0 = e−2x + ln x → α = e−2x + x ln |x| − x 1 1 2 1 x2 1 x2 α0 = −x(e−2x + ln x) → α = e2x + − xe2x − ln x 2 2 4 4 2 2 ⇒ nghi^e.m ri^eng ⇒ nghi^e.m t^o'ng quat: 1 3x2 x2 y = e−2x(C x + C ) + e−2x( e2x − + ln x) 1 2 4 4 2 . . 111) Gia'i phuong trnh: y” + y0 = e−x(sin x − cos x)
- 4 www.VNMATH.com . . . . HD gia’i: D- a. t y = e−xz thay vaophuong trnh duo. c: z” − z0 = sin x − cos x. . . . Phuong trnh da. c trung: λ2 − λ = 0 ⇔ λ = 0, λ = 1 ' x Nghi^e.m t^ong quat: z = C1 + C2e . Tmnghi^e.m ri^engda.ng: z = A cos x + B sin x ⇒ A = 1,B = 0. ' −x x V^a. y nghi^e.m t^ong quat la: y = e (C1 + C2e + cos x) . . 112) Gia'i phuong trnh: y” − 4y0 + 8y = e2x + sin 2x . . . 2 HD gia’i: Phuong trnhda. c trung: λ − 4λ + 8 = 0 ⇔ λ1 = 2 − 2i; λ2 = 2 + 2i ' . . 2x Nghi^e.m cua phuong trnh thu^an nh^at: y = e (C1 cos 2x + C2 sin 2x) . ' 0 2x Nghi^e.m ri^engda.ng y = y1 + y2 voi y1 langhi^e.m ri^engcua y” − 4y + 8y = e 1 da.ng y = Ae2x → A = ; y langhi^e.m ri^engcu'a y” − 4y0 + 8y = sin 2x 1 4 2 1 1 da.ng y = A cos 2x + B sin 2x → A = ,B = . 2 10 20 V^a. y nghi^e.m t^o'ng quat: 1 1 y = e2x(C cos 2x + C sin 2x) + e2x − (2 cos 2x + sin 2x) 1 2 4 20 . . . 1 113) Gia'i phuong trnh: y” + y = sin x . . . HD gia’i: Phuong trnhda. c trung: λ2 + 1 = 0 ⇔ λ = ±i NTQ : y = C1 cos x + C2 sin x Tmnghi^e.m ri^engda.ng: y = α1(x) cos x + α2(x) sin x Bang cach bi^en thi^enhang s^o α0 cos x + α0 sin x = 0 ( 0 ( 1 2 α1 = −1 α1 = −x 1 ⇒ cos x ⇒ α0 (− sin x) + α0 cos x = α0 = α = ln sin x 1 2 sin x 2 sin x 2 ' V^a. y nghi^e.m t^ong quat: y = C1 cos x + C2 sin x − x cos x + sin x ln sin x . . x 114) Gia'i phuong trnh: y” − 3y0 + 2y = 2x2 − 5 + 2ex cos 2 2 HD gia’i: λ − 3λ + 2 = 0 ⇔ λ1 = 1; λ2 = 2 x 2x NTQ: y = C1e + C2e x 2x Tmnghi^e.m ri^engda.ng: y = α1(x)e + α2(x)e bang cach bi^en thi^enhang s^o: ( 0 x 0 2x α1e + α2e = 0 x α0 ex + α0 (2e2x) = 2x2 − 5 + 2ex cos 1 2 2 0 −x 2 x α1 = −e (2x − 5) − 2 cos 2 x α0 = e−2x(2x2 − 5) + 2e−x cos 2 2 −x 2 x α1 = e (2x − 4x − 1) − 4 sin ⇒ 2 1 −2x 2 −2x 1 −2x 8 −2x x 1 −x x α2 = − [e (2x − 5) + 2(xe + e )] + (−e cos + e sin ) 2 2 3 2 2 2 . . . Tu doconghi^e.m t^o'ng quat cu'a phuong trnh.
- www.VNMATH.com 5 . . 115) Gia'i phuong trnh: y” − 4y = (2 − 4x)e2x ' −2x 2x HD gia’i: Nghi^e.m t^ong quat: y = C1e + C2e 2 2 Nghi^e.m ri^engda.ng: y = xe2x(Ax + B); A = − ,B = 3 3 2 → Nghi^e.m t^o'ng quat: y = C e−2x + C e2x + xe2x(1 − x) 1 2 3 . . ex 116) Gia'i phuong trnh: y” − 2y0 + y = + cos x x ' x HD gia’i: Nghi^e.m t^ong quat: y = e (C1x + C2) ∗ x x nghi^e.m ri^engda.ng: y = α1xe + α2e bi^en thi^enhang s^o: 1 1 −x 0 −x α1 = ln |x| + e (sin x − cos x) α1 = e cos x 2 x → 1 α0 = −(1 + xe−x cos x) α = −x − (xe−x(sin x − cos x) + e−x sin x) 2 2 2 ⇒ Nghi^e.m t^o'ng quat . . 117) Gia'i phuong trnh: y” − 2y0 + 2y = x(ex + 1) . . . HD gia’i: Phuong trnh da. c trung: λ2 − 2λ + 2 = 0 ⇔ λ = 1 − i λ = 1 + i . . . . 1 . 2 Nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at tuong ung: x y = e (C1 cos x + C2 sin x) . ' 0 x Nghi^e.m ri^engda.ng y = y1 + y2 voi y1 langhi^e.m ri^engcua y” − 2y + 2y = xe x ' 0 coda.ng y1 = e (Ax + B) → A = 1,B = 0; Va y2 langhi^e.m ri^engcua y” − 2y + 2y = x 1 y2 = Ax + B → A = B = . 2 . . V^a. y nghi^e.m t^o'ng quat cu'a phuong trnh: 1 y = ex(C cos x + C sin x) + xex + (x + 1) 1 2 2 . . . e−x 118) Gia'i phuong trnh: y” + 2y0 + y = sin x + x . . . HD gia’i: Phuong trnh da. c trung λ2 + 2λ + 1 = 0 ⇔ λ = −1 (b^o. i 2) ' −x Nghi^e.m t^ong quat: y = e (C1x + C2). −x −x Tmnghi^e.m ri^engda.ng: y = α1(x)xe + α2(x)xe Bi^en thi^enhang s^o: ex 0 x 1 α = e sin x + α1 = (sin x − cos x) + ln |x| 1 2 x ⇒ x x 2 0 x x xe e x α2 = −xe sin x − α = −[ (sin x − cos x) + cos x] − 2 2 2 2 4 cos x x2e−x Suy ra nghi^e.m t^o'ng quat: y = e−x(C x + C ) + xe−x ln |x| − − . 1 2 2 4
- 6 www.VNMATH.com . . 1 119) Gia'i phuong trnh: y” + y = sin x . . . HD gia’i: Phuong trnhda. c trung λ2 + 1 = 0 ⇔ λ = ±i ' Nghi^e.m t^ong quat: y = A1 cos x + A2 sin x. ( 0 ( Bi^en thi^enhang s^o: A1 = −1 A1 = −x 0 ⇒ A2 = cotgx A2 = ln | sin x|. ' V^a. y nghi^e.m t^ong quat: y = (C1 − x) cos x + (C2 + ln | sin x|) sin x. . . 120) Gia'i phuong trnh: y” + y = xex + 2e−x . . . HD gia’i: Phuong trnh da. c trung λ2 + 1 = 0 ⇔ λ = ±i ' Nghi^e.m t^ong quat: y = C1 cos x + C2 sin x. Tmnghi^e.m ri^engda.ng: 1 2A = 1 A = 2 x −x 1 y = (Ax + B)e + Ce → A + B = 0 → B = − 2C = 2 2 C = 1 1 V^a. y nghi^e.m t^o'ng quat: y = C cos x + C sin x + (x − 1)ex + e−x 1 2 2 . . 121) Gia'i phuong trnh: y” − y0 − 2y = cos x − 3 sin x . . . 2 HD gia’i: Phuong trnhda. c trung λ + λ − 2 = 0 ⇔ λ1 = −2; λ2 = 1 ' −2x x Nghi^e.m t^ong quat: y = C1e + C2e Tmnghi^e.m ri^engda.ng: ( ( B − 3A = 1 A = 0 y = A cos x + B sin x → → −A − 3B = −3 B = 1 ' −2x x V^a. y nghi^e.m t^ong quat: y = C1e + C2e + sin x . . 122) Gia'i phuong trnh: y” − 2y0 = 2 cos2 x . . . 2 HD gia’i: Phuong trnh da. c trung λ − 2λ = 0 ⇔ λ1 = 0; λ2 = 2 ' 2x Nghi^e.m t^ong quat: y = C1 + C2e . Tmnghi^e.m ri^engda.ng: y = Ax + B cos 2x + C sin 2x 1 A = − −2A = 1 2 . . 1 Thay vaoduo. c: −4(B + C) = 1 → B = − 8 4(B − C) = 0 1 C = − 8 x 1 V^a. y nghi^e.m t^o'ng quat: y = C + C e2x − − (cos 2x + sin 2x) 1 2 2 8 . . 123) Gia'i phuong trnh: y” + y = sin x + cos 2x
- www.VNMATH.com 7 . . . HD gia’i: Phuong trnh da. c trung λ2 + 1 = 0 ⇔ λ = ±i ' ' . . Nghi^e.m t^ong quat cua phuong trnh thu^an nh^at: y = C1 cos x + C2 sin x. Tmnghi^e.m ri^engda.ng: y = x(A cos x + B sin x) + C cos 2x + D sin 2x . . . . 1 1 Thay vaophuong trnhvad^ong nh^at duo. c: A = − ; B = 0; C = − ; D = 0 2 3 1 1 V^a. y nghi^e.m t^o'ng quat: y = C cos x + C sin x − x cos x − cos 2x. 1 2 2 3 . . 124) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: y00 − 2y0 = 2 cos2 x HD gia’i: . . . 2 ' ' Phuong trnhda. c trung λ − 2λ = 0 ⇐⇒ λ1 = 0; λ2 = 2. Nghi^e.m t^ong quat cua . . . . . 2x phuong trnhtuy^en tnh thu^an nh^at tuong ung: y = C1 + C2e . Tmnghi^e.m ri^eng da.ng: y∗ = Ax + B cos 2x + C sin 2x . . 1 1 1 D- uo. c A = − ; B = − ; C = − . V^a. y NTQ: 2 8 8 x 1 y = C + C e2x − − (cos 2x + sin 2x) 1 2 2 8 . . 125) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: x x x (x + e y )dx + e y (1 − )dy = 0. y 2 . . x x HD gia’i: Phuong trnhvi ph^antoanph^an cotch ph^ant^o'ng quat; + ye y = C. 2 . . 126) Gia'i phuong trnh: y00 − 6y0 + 9y = 25ex sin x. . . . . . HD gia’i: NTQ cu'a phuong trnhtuy^en tnh thu^an nh^at tuong ung y = (C +C x)e3x. . . 1 2 Tmnghi^e.m ri^engda.ng: y∗ = ex(A cos x + B sin x); duo. c A = 4; B = 3. V^a. y NTQ: 3x x y = (C1 + C2x)e + e (3 cos x + 4 sin x) . . 127) Ha~y tmnghi^e.m t^o'ng quat cu'a phuong trnh: y00 − 2y0 + 2y = x(ex + 1) . . . 2 ' HD gia’i: Phuong trnhda. c trung λ − 2λ + 2 = 0 ⇐⇒ λ1 = 1 ± i. Nghi^e.m t^ong quat ' . . . . . x cua phuong trnhtuy^en tnh thu^an nh^at tuong ung: y = e (C1 cos x + C2 sin x). Tm ∗ . ' 00 0 x nghi^e.m ri^engda.ng: y = y1 + y2; voi y1 langhi^e.m ri^engcua y − 2y + 2y = xe , coda.ng x ' 00 0 y1 = e (Ax + B) =⇒ A = 1; B = 0 va y2 langhi^e.m ri^engcua y − 2y + 2y = x, coda.ng 1 y = A0x + B0 =⇒ A0 = B0 = . v^a. y nghi^e.m t^o'ng quat: 2 2 1 y = ex(C cos x + C sin x) + xex + (x + 1) 1 2 2
- 8 www.VNMATH.com . . 128) Tmnghi^e.m t^o'ng quat cu'a phuong trnh: x2y00 − 2y = x3 cos x ' . . 2 bi^et m^o.t nghi^e.m ri^engcua phuong trnhthu^an nh^at la y1 = x . . . 1 . HD gia’i: TmNR da.ng y = uy = ux2 duo. c y = − . Nhu v^a. y NTQ: y = 2 1 2 3x C2 . . 1 C x2 + . Bi^en thi^enhang s^o duo. c C0 = − cos x; C0 = x3 cos x 1 x 1 3 2 . . 129) Gia'i phuong trnhvi ph^ansau d^ayn^eu bi^et m^o.t nghi^e.m ri^engcu'a no . coda.ng dathuc: (x2 + 1)y00 − 2y = 0 ~ 2 ' . . HD gia’i: D^e th^ay y1 = x + 1 lam^o. t nghi^e.m ri^engcua phuuong trnh,nghi^e.m ri^eng . . thu hai d^o. c l^a. p tuy^en tnh voi y1 la: Z Z 1 − R 0.dx 2 dx 1 2 x y2 = y1 2 e dx = (x + 1) 2 2 = (x + 1)( 2 + arctan x) y1 (x + 1) 2 x + 1 x V^a. y NTQ: y = C (x2 + 1) + C (x2 + 1)( + arctan x) 1 2 x2 + 1 . . 130) Tmnghi^e.m t^o'ng quat cu'a phuong trnh: y00 + y = sin x + cos 2x. . . . 2 ' ' HD gia’i: Phuong trnhda. c trung λ + 1 = 0 ⇐⇒ λ1 = ±i. Nghi^e.m t^ong quat cua . . . . . phuong trnhtuy^en tnh thu^an nh^at tuong ung: y = C1 cos x + C2 sin x. Tmnghi^e.m . . . 1 ri^engda.ng: y∗ = y + y ; voi y langhi^e.m ri^engcu'a y00 + y = sin x, duo. c y = − x cos x 1 2 1 1 2 . . 1 va y langhi^e.m ri^engcu'a y00 + y = cos 2x, duo. c y = − cos 2x. V^a. y nghi^e.m t^o'ng quat: 2 2 3 1 1 y = C cos x + C sin x − x cos x − cos 2x 1 2 2 3 . . 131) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: y00 + 10y0 + 25y = 4e−5x . . . 2 ' HD gia’i: Phuong trnhda. c trung r + 10r + 25 = 0 giai ra r1 = r2 = 5 ' . . −5x ' . . NTQ cua phuong trnh thu^an nh^at: y = (C1 + C2x)e va NR cua phuong trnh kh^ongthu^an nh^at: y∗ = 2x2e−5x. V^a. y −5x 2 −5x NTQ: y = (C1 + C2x)e + 2x e . . sin x 132) Bi^et rang phuong trnh xy00 + 2y0 + xy = 0 conghi^e.m ri^engda.ng y = . . . x Ha~y tmnghi^e.m t^o'ng quat cu'a phuong trnh. . sin x cos x HD gia’i: Nghi^e.m ri^engd^o. c l^a. p tuy^en tnh voi y = la y = . V^a. y nghi^e.m x x t^o'ng quat cu'a phu.o.ng trnh la sin x cos x y = C . + C . 1 x 2 x
- www.VNMATH.com 9 . . 133) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: y00 + y0 = 4x2ex ' ' . . . . . −x HD gia’i: Nghi^e.m t^ong quat cua phuong trnhthu^an nh^at tuong ung: y = C1+C2e ∗ 2 −x ' Tmnghi^e.m ri^engda.ng: y = (A1x + A2x + A3)e , giai ra A1 = 2; A2 = −6; A3 = 7. . . 134) Tmnghi^e.m t^o'ng quat cu'a phuong trnhvi ph^an: y00 + 3y0 + 2y = x sin x ' ' . . . . . −x HD gia’i: Nghi^e.m t^ong quat cua phuong trnhthu^an nh^at tuong ung: y = C1e + −2x ' . . . . . . C2e . Nghi^e.m ri^engcua phuong trnhkh^ongthu^an nh^at duo. c tmduoi da.ng: y = . . 3 17 1 3 (A x + A ) cos x + (B x + B ) sin x vatmduo. c A = − ; A = ; B = ; B = . 1 2 1 2 1 10 2 50 1 10 2 25 . . . 135) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − 2y0 + 2y = xex . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 y = ex(C cos x + C sin x) + (x + 1) + ex 1 2 2 . . . 136) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” + y = cos 2x. . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C cos x + C sin x + − cos 2x. 1 2 2 6 . . 137) Tmnghi^e.m t^o'ng quat cu'a phuong trnh: (1 − x2)y” − 2xy0 + 2y = 0 khi bi^et m^o.t nghi^e.m ri^eng y1 = x. . 2x HD gia’i: Chuy^e'n v^e da.ng y” + p (x)y0 + p (x)y = 0. Voi p (x) = − n^ennghi^e.m 1 2 1 1 − x2 t^o'ng quat cu'a phu.o.ng trnh da~ cho la R 2x dx Z e 1−x2 Z dx y = x{ C dx + C } = x{C + C } 1 x2 2 1 x2(1 − x2) 2 1 1 1 + x x 1 + x = x{(− + ln ) + C } = C x + C ( ln − 1). x 2 1 − x 2 2 1 2 1 − x . . . 138) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − 3y0 + 2y = 2 + ex . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la:
- 10 www.VNMATH.com x 2x x y = C1e + C2e − 2xe . . . . 139) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − y0 = sin2 x. . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C + C ex + cos x − ln x. 1 2 2 2 . . . 140) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − 2y0 + 10y = xex . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 y = C ex cos 3x + C ex sin 3x − xex. 1 2 9 . . . 141) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” + y = cos 2x + sin x. . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C ex cos x + C ex sin x − cos 2x − x cos x. 1 2 3 2 . . . 142) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − 2y0 + y = xex . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: x3 y = C ex + C xex + ex. 1 2 6 . . . 143) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” + y = cos 2x. . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C + C e−x + sin 2x − cos 2x. 1 2 10 5 . . 3 1 144) Tmnghi^e.m t^o'ng quat cu'a phuong trnh y” + y0 + y = 0, x x2 1 khi bi^et m^o.t nghi^e.m ri^engcoda.ng y = . 1 x
- www.VNMATH.com 11 . . . . . . . . . HD gia’i: Phuong trnhda~ cho tuong duong voi phuong trnh x2y” + 3xy0 + y = 0. . . . . . . D- ^aylaphuong trnhEuler n^enta coth^e' dua v^e phuong trnhtuy^en tnh voi h^e. s^o hang bang cach dat t Khi dophu.o.ng trnh da~ cho tro'. thanh 0 . x = e . yt” + 2yt + y = 0. . . −t −t ' . . Phuong trnhnayconghi^e.m la y = C1e + C2te . V^a. y nghi^e.m cua phuong trnh C ln |x| da~ cho la y = 1 + C . x 2 x . . . 145) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang a) y” − 3y0 + 2y = 2e2x . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: x 2x 2x y = C1e + C2e + 2e . . . . 146) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang 1 a) y” + y = cos2 x ' . . . . HD gia’i: Nghi^e.m cua phuong trnhthu^an nh^at y = C1 cos x + C2 sin x. Dungphuong sin x 1 phap bi^en thi^enhang s^o ta du.o.c 0 va 0 . C1(x) = − 2 C2(x) = . . . cos x cos x V^a. y nghi^e.m cu'a phuong trnh la sin x 1 + sin x y = C cos x + C sin x − 1 + ln | |. 1 2 2 1 − sin x . . . 147) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − 2y0 + 2y = x + ex . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 y = ex(C cos x + C sin x) + (x + 1) + ex. 1 2 2 . . . 148) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” + y = cos2 x. . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. 1 1 Nghi^e.m t^o'ng quat la: y = C cos x + C sin x + − cos 2x. 1 2 2 6 . . 1 149) Tmnghi^e.m t^o'ng quat cu'a phuong trnh xy” + y0 − y = 0, a x khi bi^et m^o.t nghi^e.m ri^engcoda.ng y = . 1 x
- 12 www.VNMATH.com 1 . . 1 HD gia’i: y = lam^o. t nghi^e.m cu'a phuong trnh.Ta tmnghi^e.m ri^eng y = u(x) . 1 x 2 x . . . . ' ' . . Thay vaophuong trnhta tmduo. c y2 = x. V^a. y nghi^e.m t^ong quat cua phuong trnh la C y = 1 + C x. x 2 . . . 150) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang a) y” − 3y0 + 2y = 2ex HD gia’i: . . . D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ong thu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: x 2x x y = C1e + C2e − 2xe . . . . 151) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − y = sin x. HD gia’i: . . . D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ong thu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C + C ex + cos x − sin x. 1 2 2 2 . . 152) Tmnghi^e.m t^o'ng quat cu'a phuong trnh x2y” − 2xy0 − 4y = 0, 1 khi bi^et m^o.t nghi^e.m ri^engcoda.ng y = . 1 x 1 . . 1 HD gia’i: y = lam^o. t nghi^e.m cu'a phuong trnh.Ta tmnghi^e.m ri^eng y = u(x) . 1 x 2 x . . . . 4 ' ' . . Thay vaophuong trnhta tmduo. c y2 = x . V^a. y nghi^e.m t^ong quat cua phuong trnh la C y = 1 + C x4. x 2 . . . 153) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” + y = x + 2ex HD gia’i: . . . D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ong thu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: x y = C1 cos x + C2 sin x + x + e . . . . 154) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − y0 + y = x.
- www.VNMATH.com 13 HD gia’i: . . . D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ong thu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: √ √ x 3 3 y = e 2 (C cos x + C sin x) + 1 + x. 1 2 2 2 . . . 155) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” − 2y0 + y = x + ex . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 y = C ex + C xex + 2 + x2ex. 1 2 2 . . . 156) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang y” + y = sin2 x. . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C cos x + C sin x + + cos 2x. 1 2 2 6 . . 1 157) Gia'i phuong trnhtuy^en tnh c^ap 2 sau: xy” − y0 − y = 0. x . . . . . HD gia’i: D- ^aylaphuong trnhEuler n^enta coth^e' dua v^e phuong trnhtuy^en . . . . tnh voi h^e. s^o hang bang cach da. t x = et. Khi dophuong trnhda~ cho tro' thanh y ” − 2y0 − y = 0. t . t. Phuong trnh nayconghi^e.m la √ √ (1+ 2)t (1− 2)t y = C1e + C2e . . . V^a. y nghi^e.m cu'a phuong trnh da~ cho la √ √ 1+ 2 1− 2 y = C1x + C2x . . . . 158) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang sau: y” − 3y0 + 2y = 2 cos x . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 3 y = C ex + C e2x + cos x − sin x. 1 2 5 5 . . . 159) Gia'i phuong trnhtuy^en tnh c^ap 2 voi h^e. s^o hang sau: y” − y = sin x + ex.
- 14 www.VNMATH.com . . . HD gia’i: D- ^aylaphuong trnhtuy^en tnh c^ap 2 kh^ongthu^an nh^at voi h^e. s^o hang. Nghi^e.m t^o'ng quat la: 1 1 y = C + C ex + xex + cos x − sin x. 1 2 2 2 z . . 160) Dungphep d^o'i ham y = d^e' gia'i phuong trnhvi ph^an: x2 x2y” + 4xy0 + (x2 + 2)y = ex z z0x − 2z z”x2 − 4z0x + 6z HD gia’i: y = ⇒ y0 = ; y” = x2 x3 x4 . . . ex Phuong trnh tro' thanh: z” + z = ex com^o. t nghi^e.m ri^eng y = . . . . . 2 Phuong trnh thu^an nh^at cophuong trnh da. c trung λ2 + 1 = 0 ⇔ λ = ±i ex V^a. y nghi^e.m t^o'ng quat: z = C cos x + C sin x + 1 2 2 cos x sin x ex V^a. y y = C + C + 1 x2 2 x2 2x2 . . 161) Gia'i phuong trnh y” cos x + y0 sin x − y cos3 x = 0 bang phep bi^en d^o'i t = sin x 0 0 0 0 HD gia’i: t = sin x : yx = yt.tx = yt cos x 2 0 y”xx = y”tt cos x − yt sin x . . t −t sin x − sin x Thay vaophuong trnh: y”tt − y = 0 → y = C1e + C2e = C1e + C2e . . x x x 162) Tmnghi^e.m ri^engcu'a phuong trnh (x + e y )dx + e y (1 − ) = 0 y thoa' di^eu ki^e.n y(0) = 2 2 ∂P ∂Q x x x x HD gia’i: = = − e y , y 6= 0 TPTQ: + ye y = C ∂y ∂x y2 2 y(0) = 2 ⇒ C = 2. . . 163) Gia'i phuong trnhvi ph^an y” + y0tgx − y cos2 x = 0 bang phep bi^en d^o'i t = sin x . . . HD gia’i: Tuong tu. bai2 . 1 1 164) Cho bi^e'u thuc: h(x) ( − ln(x + y))dx + dy . x.+ y . x + y Ha~y tmhams^o h(x) sao cho bi^e'u thuc tr^entro' thanhvi ph^antoanph^an cu'a m^o.t ham F (x, y) vatmhams^o do. 1 HD gia’i: D- a. t P = h(x) ln (x + y) x + y 1 Q = h(x). x + y (D- i^eu ki^e.n x+y > 0) d^e' P dx + Qdy lavi ph^antoanph^an: ∂P ∂Q −h(x)(x + y + 1) h0(x)(x + y) − h(x) = ⇔ = ∂y ∂x (x + y)2 (x + y)2
- www.VNMATH.com 15 ⇔ h0(x + y) + h(x + y) = 0 ⇔ h0 + h = 0 ⇔ h(x) = e−x Va F (x, y) = e−x ln(x + y) . . 165) Gia'i phuong trnhvi ph^an: xy” + 2(1 − x)y0 + (x − 2)y = e−x bang phep d^o'i ^a'n ham z = yx z z0x − z . . . HD gia’i: z = yx ⇔ y = ; y0 = = ; y” = tuong tu. bai1 x x2 166) Cho P (x, y) = ex sin y + 2m2x cos y; Q(x, y) = ex cos y + mx2 sin y. Tmm d^e' P (x, y)dx + Q(x, y)dy lavi ph^antoanph^an cu'a hams^o F (x, y) naodovatmham^ay. ∂P ∂Q HD gia’i: = ⇔ 2x sin y(m2 + m) = 0 Cho.n m = 0V m = −1. ∂y ∂x . . y 1 167) Gia'i phuong trnh x2y” + 2xy0 + = 0 bang phep bi^en d^o'i x = x2 t HD gia’i: 168) Tmham µ(x2 + y2) sao cho µ(x2 + y2) (x − y)dx + (x + y)dy lavi ph^antoanph^an cu'a m^ot ham naodo. Tmham . F (x,√ y) √ F (x, y) n^eu bi^et µ(1, 1) = 0; µ( 2, 2) = ln 2 HD gia’i: P (x, y) = h(x2 + y2)(x − y); Q(x, y) = h(x2 + y2)(x + y) ∂P ∂Q D- ^e' h(x − y)dx + h(x + y)dy lavi ph^antoanph^an ta pha'i co: = ∂y ∂x D- at 2 2 0 0 . t = x + y ⇒ ht.2y(x − y) − h = ht.2y(x + y) + h C C ⇔ −h0 (x2 + y2) = h ⇔ h0 t = h ⇒ h = 1 ⇒ h = 1 . t t t x2 + y2 x y R x − 0 R x + y y C1 2 2 ⇒ F (x, y) = C1 2 2 dx + C1 2 2 dy = C1arctg + ln(x + y ) + C2 1 x + 0 0 x + y 2 2 √ √ π F (1, 1) = 0; F ( 2, 2) = ln 2 Cho: C = 2; C = −( + ln 2) 1 2 2 . . 169) Gia'i phuong trnh x2y” + xy0 + y = x bang phep d^o'i bi^en x = et 1 1 HD gia’i: x = et ta co: y0 = y0. ; y” = (y” − y0) x t x xx tt t x2 . . t Thay vaophuong trnh: y”tt + y = e ' ' . . Nghi^e.m t^ong quat cua phuong trnh thu^an nh^at: y = C1 cos t + C2 sin t 1 Tmnghi^e.m ri^engda.ng: y + Aet; A = 2 x V^a. y nghi^e.m t^o'ng quat: y = C cos (ln x) + C sin (ln x) + 1 2 2
- 16 www.VNMATH.com . . 170) Gia'i phuong trnhvi ph^an: xy” − (x + 1)y0 − 2(x − 1)y + x2 = 0 . . . . . bi^et rang phuong trnhthu^an nh^at tuong ung com^o.t nghi^e.m ri^eng y = eαx . 1 voi α lahang s^o c^an xac di.nh. αx . . . . HD gia’i: Thay nghi^e.m y1 = e vaophuong trnh r^oi d^ong nh^at duo. c α = 2 . . . x + 1 2(x − 1) D- ua phuong trnh v^e da.ng: y” − y0 − y = −x; x 6= 0 x x x + 1 2(x − 1) p(x) = − ; q(x) = − ; f(x) = −x x x x + 1 R dx 2x R −4x 1 −x Tmnghi^e.m ri^eng: y2 = e e e x dx = − (3x + 1)e . . . 9 Suy ra nghi^e.m t^o'ng quat cu'a phuong trnh thu^an nh^at: 2x −x y = C1e + C2(3x + 1)e Bi^en thi^enhang s^o: 1 1 C0 = − (3x + 1)e−2x C = (6x + 5)e−2x 1 9 1 36 1 → 1 C0 = ex C = ex 2 9 2 9 ⇒ NTQ. . . 171) Gia'i phuong trnhvi ph^an x2y00 − 4xy0 + 6y = 0 bang phep d^o'i bi^en x = et. 1 1 HD gia’i: x = et, ta co: y0 = y0. , y” = (y” − y0) x t x xx tt t x2 Phu.o.ng trnh tro'. thanh: 0 NTQ: 2 3 y”tt − 5yt + 6y = 0 ⇒ y = C1x + C2x . . 172) Gia'i phuong trnhvi ph^an: y” − (2ex + 1)y0 + e2xy = e3x bang phep d^o'i bi^en t = ex. D- ^o'i bi^en x 0 0 x 2x 0 x HD gia’i: t = e ⇒ yx = yt.e , y”xx = y”tt.e + yt.e Thay vaophu.o.ng trnh: 0 3 y”tt − 2yt + y = t ' ' . . t Nghi^e.m t^ong quat cua phuong trnh thu^an nh^at: y = e (C1t + C2) Tmnghi^e.m ri^engda.ng y = At3 + Bt2 + Ct + D → y = t3 + 6t2 + 18t + 24 K^et qua' ex x 3x 2x x y = e (C1e + C2) + e + 6e + 18e + 24. . . 173) Gia'i phuong trnhvi ph^an: (x − 1)y” − xy0 + y = (x − 1)2e2x . . . . . bi^et m^o.t nghi^e.m ri^engcu'a phuong trnhthu^an nh^at tuong ung coda.ng y = eαx (α c^an xac di.nh). . . . x 1 HD gia’i: D- ua phuong trnh v^e: y” − .y0 + .y = (x − 1)e2x x − 1 x − 1 . x 1 Voi p(x) = ; q(x) = ; f(x) = (x − 1)e2x x − 1 x − 1 αx . . . . . Thay y1 = e vaophuong trnhthu^an nh^at tuong ung r^oi d^ong nh^at suy ra α = 1 R x x R −2x dx Tmnghi^e.m ri^eng y2 = e e e x−1 dx = −x
- www.VNMATH.com 17 x ⇒ NTQ: y = C1e + C2(−x) Bi^en thi^enhang s^o: ( x x C0 = xex C1 = xe − e + K1 1 → 1 C0 = e2x C = e2x + K 2 2 2 2 x V^a. y nghi^e.m t^o'ng quat: y = ( − 1)e2x + K ex − K x 2 1 2 . . 1 174) Gia'i phuong trnhvi ph^an: x2(x + 1)y” = 2y bi^et m^o.t nghi^e.m y = 1 + . 1 x . . . 2 HD gia’i: D- ua phuong trnh v^e: y00 − .y = 0; p(x) = 0; f(x) = 0. x2(x + 1) TmNR da.ng 2 1 Z x R 1 1 y = (1 + ) .e− 0dxdx = (1 + )(x − 2 ln |x + 1| − ) 2 x (x + 1)2 x 1 + x x + 1 1 = x + 1 − ln(x + 1)2 − . x x 1 1 x + 1 V^a. y nghi^e.m t^o'ng quat: y = C (1 + ) + C (x − − 1 + ln(x + 1)2 + 1). 1 x 2 x x . . 175) Gia'i phuong trnhvi ph^an (x2 + 1)y” − 2y = 0 . n^eu bi^et m^o.t nghi^e.m cu'a nocoda.ng dathuc. ~ 2 ' HD gia’i: D^e th^ay y1 = x + 1 lam^o. t nghi^e.m ri^engcua (1). Z Z . 1 − R p(x)dx 2 dx Nghiˆe.m th´u hai: y2 = y1 2 .e dx = (x + 1) 2 2 y1 (x + 1) 1 x = (x2 + 1)( + arctgx) 2 x2 + 1 x V^a. y nghi^e.m t^o'ng quat: y = C (x2 + 1) + C (x2 + 1)( + arctgx). 1 2 x2 + 1 . . 176) Gia'i phuong trnhvi ph^an xy” + 2y0 − xy = ex bang phep d^o'i ham z = xy. . . HD gia’i: D- a. t z = xy ⇒ z0 = y + xy0; z00 = 2y0 + xy00. Thay vaophuong trnh: 00 x x z − z = e → NTQ z = C1 + C2e 1 Nghi^e.m ri^engda.ng: y = Axex → A = 2 z 1 1 V^a. y: y = = (C + C ex + xex) x x 1 2 2 . ∞ xn+1 177) Chung to' rang ham: f(x) = P . . n=0 n! langhi^e.m cu'a phuong trnh xf 0(x) − (x + 1)f(x) = 0.
- 18 www.VNMATH.com . ∞ xn+1 . HD gia’i: Dungtnh ch^at D'Alembert d^e' chung to' chu^o~i P h^o. i tu. voi mo.i x n=0 n! . ∞ xn+1 . Nhu v^a. y ham f(x) = P xac di.nh voi mo.i x. n=0 n! . . ∞ xn Hon n~ua: f(x) = x P = xex n! n=0 . ⇒ xf 0(x) − (x + 1)f(x) = x(x + 1)ex − (x + 1)xex = 0, ∀x di^eu pha'i chung minh. . . 178) Gia'i phuong trnh x(x2 + 6)y” − 4(x2 + 3)y0 + 6xy = 0 . bi^et rang noconghi^e.m da.ng dathuc. . . 2 2 HD gia’i: Ta tmnghi^e.m ri^engduoi da.ng y1 = Ax + Bx + C ⇒ y1 = x + 2 2 . 1 − R − 4(x +3) dx nghi^em ri^engthu hai: R x(x+6) . y2 = y1 2 e dx y1 x2(x2 + 6) 2x √ x = (x2 + 2) R dx = (x2 + 2)(x + + 2 2arctg√ ) (x2 + 2)2 (x2 + 2) 2 √ 2 3 2 x V^a. y NTQ: y = C1(x + 2) + C2[x + 4x + 2 2(x + 2)arctg√ ] 2 . . 179) Gia'i phuong trnh (2x + 1)y” + (2x − 1)y0 − 2y = x2 + x bi^et rang x2 + 4x − 1 x2 + 1 nocohai nghi^e.m ri^eng y = ; y = . 1 2 2 2 . . . HD gia’i: Tu hai nghi^e.m ri^eng y , y cu'a phuong trnhta suy ra nghi^e.m ri^engcu'a . . 1 2 phuong trnh thu^an nh^at la y = y − y = 2x − 1 . 1 1 2 Suy ra nghi^e.m thu hai: Z 1 R Z 1 R 2x−1 − p(x)dx − 2x+1 dx y2 = y1 2 e dx = (2x − 1) 2 e dx y1 (2x − 1) Z (2x + 1)e−x 1 (2x + 1)e−x Z e−x(1 − 2x) = 2(x − 1) dx = (2x − 1)[− + dx] (2x − 1)2 2 (2x − 1)2 2x − 1 = −e−x −x Suy ra NTQ: y = C1(2x − 1) + C2e . . x2 + 1 Vanghi^e.m t^o'ng quat cu'a phuong trnh ban d^au: y = C (2x − 1) + C e−x + 1 2 2 2 . . 180) Xac di.nh hang s^o α sao cho y = eαx lam^o.t nghi^e.m ri^engcu'a phuong trnhvi ph^an: . . y” + 4xy0 + (4x2 + 2)y = 0. Tmnghi^e.m t^o'ng quat cu'a phuong trnh^ay. . . 2 . . HD gia’i: Ta tmnghi^e.m ri^engduoi da.ng y = eαx thay vaoduo. c α = −1 vanghi^e.m −x2 ri^eng y1 = e 1 R 2 2 R 2 Nghi^em thu. hai: R − P (x)dx −x R 2x − 4xdx −x . . y2 = y1 2 e dx = e e e dx = xe y1 −x2 −x2 V^a. y NTQ: y = C1e + C2xe . dx = 3x − y Gia'i h^e phu.o.ng trnh: dt 181) . dy = 4x − y dt
- www.VNMATH.com 19 . . . 3 − λ −1 HD gia’i: Phuong trnh da. c trung = (λ − 1)2 = 0 ⇔ λ = 1 (b^o. i 2) 4 −1 − λ a = 3a − c x (at + b)et . . a + b = 3b − d Tmnghi^e.m da.ng = thay vaoh^e. r^oi d^ong nh^at duo. c: y (ct + d)et c = 4a − c c + d = 4b − d Cho a = C1, b = C2 ⇒ c = 2C1, d = 2C2 − C1 ( t V^ay nghi^em t^o'ng quat: x = (C1t + C2)e . . t y = (2C1t + 2C2 − C1)e . dx = 2x + y Gia'i h^e phu.o.ng trnh: dt 182) . dy = 4y − x dt . . . . . . HD gia’i: Tuong tu. bai1), phuong trnhda. c trung conghi^e.m λ = 3 (b^o. i 2) (at + b)e3t Tmnghi^e.m da.ng ⇒ a = C , c = C , b = C , d = C + C (ct + d)e3t 1 1 2 1 2 ( 3t V^ay NTQ: x = (C1t + C2)e . 3t y = (2C1t + C1 + C2)e . dx = x − 2y − z dt . . dy 183) Gia'i h^e. phuong trnh: = y − x + z dt dz = x − z dt 1 − λ −2 −1 . . . HD gia’i: Phuong trnhda. c trung −1 1 − λ 1 = 0 ⇔ λ(λ2 − λ − 2) = 0 1 0 −1 − λ ⇔ λ = 0, λ = −1, λ = 2 1 2 3 1 − λi −2 −1 P1i Vo.i cac gia'i h^e: λi; i = 1, 2, 3 . −1 1 − λi 1 P2i = 0 1 0 −1 − λ P . . . . i 3i. D- ^e' tmnghi^e.m ri^engtuong ung. Tu dosuy ra h^e. nghi^e.m co ba'n: −t −t 2t x1 = 1, y1 = 0, z1 = 1; x2 = 0, y2 = e , z2 = −2e ; x3 = 3e , y = −2e−2t, z = e2t. 3 3 x = C + 3C e2t 1 3 ' −t 2t V^a. y h^e. nghi^e.m t^ong quat: y = C2e − 2C3e −t 2t z = C1 − 2C2e + C3e dx − 5x − 3x = 0 Gia'i h^e phu.o.ng trnh: dt 184) . dy + 3x + y = 0 dt . . . 5 − λ 3 HD gia’i: Phuong trnh da. c trung = 0 ⇔ λ = 2 (b^o. i 2) −3 −λ − 1
- 20 www.VNMATH.com a − 3b = 3d at + b ⇒ nghi^e.m coda.ng e2t thay vaoh^e. ⇒ a + c = 0 ct + d c + 3b = −3d C Cho a = C , b = C ⇒ c = −C , d = 1 − C 1 2 1 3 2 2t x = (C1t + C2)e V^a. y nghi^e.m t^o'ng quat: C y = (−C t + 1 − C )e2t. 1 3 2 dx = 2x − 3y Gia'i h^e phu.o.ng trnh: dt 185) . dy = x − 2y + 2 sin t dt . . . HD gia’i: Phuong trnh da. c trung cohai nghi^e.m λ1,2 = ±1 ' 0 3 −3 γ11 + λ1 = −1 giai h^e.: = ⇒ γ11 = γ12 = 1. 0 1 −1 γ12 1 −3 γ 0 + λ = 1 gia'i h^e.: 21 = ⇒ γ = 3; γ = 1. 2 1 −3 γ 0 21 22 . 22 . . . H^e. nghi^e.m co ba'n cu'a h^e. thu^an nh^at tuong ung la: ( −t ( t x1 = e x2 = 3e −t ; t y1 = e y2 = e ( −t t V^ay NTQ cu'a h^e thu^an nh^at: x(t) = C1e + 3C2e . . −t t y(t) = C1e + C2e Bi^en thi^enhang s^o: ( ( 3 t C0 e−t + 3C0 et = 0 C0 = 3et sin t C1(t) = e (sin t − cos t) 1 2 ⇒ 1 ⇒ 2 0 −t 0 t 0 −t 1 C1e + C2e = 2 sin t C2 = e sin t C (t) = − e−t(sin t + cos t) 2 2 ( −t t V^ay NTQ: x(t) = C1e + 3C2e − 3 cos t . −t t y(t) = C1e + C2e + sin t − 2 cos t dx = 2x − y + z dt . . dy 186) Gia'i h^e. phuong trnh: = x + 2y − z dt dz = x − y + 2z dt . . . HD gia’i: Phuong trnh da. c trung: (λ − 1)(λ − 2)(λ − 3) = 0 co3 nghi^e.m λ1 = 1; λ2 = 2; λ3 = 3. 2 − λi −1 1 P1i 0 u.ng vo.i gia'i h^e: λi . 1 2 − λi −1 P2i = 0 1 −1 2 − λi P3i 0 0 1 1 0 e2t e3t - . . . t 2t Duo. c 1 ; 1 ; 0. Suy ra h^e. nghi^e.m co ba'n e ; e ; 0 1 1 1 et e2t e3t
- www.VNMATH.com 21 x = C e2t + C e3t 2 3 t 2t V^a. y NTQ: y = C1e + C2e t 2t 3t z = C1e + C2e + C3e . dx = y − 5 cos t Gia'i h^e phu.o.ng trnh: dt 187) . dy = 2x + y dt . . . . . . HD gia’i: Dungphuong phap khu' : L^ay da.o hamtheo t phuong trnh thu hai: y” = 2x0 + y0 . . . D- ^e' yphuong trnh d^au, dua v^e: y” = 2(y − 5 cos t) + y0 ⇔ y” − y0 − 2y = −10 cos t. . . . . D- ^aylaphuong trnh tuy^en tnh c^ap hai, gia'i ra duo. c nghi^e.m t^o'ng quat: 2t −t y = C1e + C2e + 3 cos t + sin t . . 1 Thay vaophuong trnhd^au: x = C e2t − C e−t − cos t − 2 sin t 2 1 2 ( 2t −t V^ay NTQ: x = A1e + A2e − cos t − 2 sin t . 2t −t y = 2A1e − A2e + 3 cos t + sin t. ( . . y0 = 3y + 2z + 4e5x 188) Gia'i h^e. phuong trnh: z0 = y + 2z ( x 4x . . . y = C1e + 2C2e ’ Nghi^em phuong trnhdac trung ; NTQ: HD giai: . . λ1 = 1; λ2 = 4 x 4x z = −C1e + C2e 4 0 4x ( x 4x 5x C1 = e y = C e + 2C e + 3e Bi^en thi^enhang s^o: 3 → NTQ 1 2 4 x 4x 5x C0 = ex z = −C1e + C2e + e 2 3 ( . . y0 = 2y − z + 2ex 189) Gia'i h^e. phuong trnh: z0 = 3y − 2z + 4ex ( y = C ex + C e−x ’ Nghi^em t^o'ng quat cu'a h^e thu^an nh^at: 1 2 HD giai: . . x −x z = C1e + 3C2e ( y∗ = xex Nghi^e.m ri^engcu'a h^e. kh^ongthu^an nh^at: z∗ = (x + 1)ex. ( x −x x V^ay nghi^em t^o'ng quat: y = C1e + C2e + xe . . x −x x z = C1e + 3C2e + (x + 1)e . ( . . y0 = 2y − 4z + 4e−2x 190) Gia'i h^e. phuong trnh: z0 = 2y − 2z
- 22 www.VNMATH.com ( y = C (cos 2x − sin 2x) + C (cos 2x + sin 2x) ’ Nghi^em t^o'ng quat: 1 2 HD giai: . −2x z = C1 cos 2x + C2 sin 2x + e . dy = y + z Gia'i h^e phu.o.ng trnh:dx 191) . dz = z − 4y. dx . . . 2 HD gia’i: Phuong trnhda. c trung λ − 2λ + 5 = 0. Khi do λ1 = 1 + 2i, λ2 = 1 − 2i. H^e. thu^an nh^at conghi^e.m x x y = e (C1 cos 2x + C2 sin 2x), z = 2e (C2 cos 2x − C1 sin 2x). dy = y + z + ex Gia'i h^e phu.o.ng trnh:dx 192) . dz = z − 4y. dx . . . 2 HD gia’i: Phuong trnhda. c trung λ − 2λ + 5 = 0. Khi do λ1 = 1 + 2i, λ2 = 1 − 2i. H^e. thu^an nh^at conghi^e.m x x y = e (C1 cos 2x + C2 sin 2x), z = 2e (C2 cos 2x − C1 sin 2x). Vanghi^e.m cu'a h^e. kh^ongthu^an nh^at x x x y = e (C1 cos 2x + C2 sin 2x), z = 2e (C2 cos 2x − C1 sin 2x) − e . dy = 2y − z Gia'i h^e phu.o.ng trnh:dx 193) . dz = 2z + 4y + e2x. dx . . . 2 HD gia’i: Phuong trnhda. c trung λ − 4λ + 8 = 0. Khi do λ1 = 2 + 2i, λ2 = 2 − 2i. H^e. thu^an nh^at conghi^e.m 2x 2x y = e (C1 cos 2x + C2 sin 2x), z = −2e (C2 cos 2x − C1 sin 2x). Vanghi^e.m cu'a h^e. kh^ongthu^an nh^at 1 y = e2x(C cos 2x + C sin 2x) − e2x, z = −2e2x(C cos 2x − C sin 2x). 1 2 4 2 1 dy = 2y + z + ex Gia'i h^e phu.o.ng trnh:dx 194) . dz = z − 4y. dx HD gia’i: . . . 2 Phuong trnh da. c trung λ − 2λ + 5 = 0. Khi do λ1 = 1 + 2i,
- www.VNMATH.com 23 λ2 = 1 − 2i. H^e. thu^an nh^at conghi^e.m x x y = e (C1 cos 2x + C2 sin 2x), z = 2e (C2 cos 2x − C1 sin 2x). Vanghi^e.m cu'a h^e. kh^ongthu^an nh^at x x x y = e (C1 cos 2x + C2 sin 2x), z = 2e (C2 cos 2x − C1 sin 2x) − e . dx = x + 2y Gia'i h^e phu.o.ng trnh: dt 195) . dy = x − 5 sin t. dt . . HD gia’i: Nghi^e.m t^o'ng quat cu'a h^e. phuong trnh thu^an nh^at: ( −t 2t x = C1e + 2C2e t 2t y = −C1e + C2e . . . Bi^en thi^enhang s^o d^e' duo. c nghi^e.m: ( −t 2t 8 4 x = C1e + 2C2e + 3 sin t + 3 cos t t 2t y = −C1e + C2e + 2 cos t − sin t. dx = x − 2y + et Gia'i h^e phu.o.ng trnh: dt 196) . dy = x + 4y + e2t. dt ' . . . . . . ' HD gia’i: Nghi^e.m cua phuong trnhda. c trung: r1 = 2; r2 = 3; tu doduo. c NTQ cua ( 2t 3t h^e phu.o.ng trnh thu^an nh^at la: x = 2C1e + C2e . 2t 3t y = −C1e − C2e . . . Bi^en thi^enhang s^o d^e' duo. c nghi^e.m t^o'ng quat cu'a h^e. kh^ongthu^an nh^at: 3 x = 2C e2t + C e3t − et + 2te2t 1 2 2 1 y = −C e2t − C e3t + et − (t + 1)e2t. 1 2 2 dx = 2x + y Gia'i h^e phu.o.ng trnh: dt 197) . dy = 4y − z. dt ' . . . HD gia’i: Nghi^e.m cua phuong trnhda. c trung: r1 = r2 = 3. V^a. y NTQ coda.ng: ( 3t x = (λ1 + µ1t)e vo.i 3t λ2 = λ1 + µ1; µ2 = µ1 y = (λ2 + µ2t)e . ( 3t Tu.c la: x = (C1 + C2t)e 3t y = (C1 + C2 + C2t)e .
- 24 www.VNMATH.com dx = 3x + 8y Tmnghi^em cu'a h^e phu.o.ng trnh: dt 198) . . dy = −x − 3y dt tho'a ma~n cac di^eu ki^e.n: x(0) = 6; y(0) = −2 . . . . dy HD gia’i: Tu phuong trnhthu hai: x = − − 3y, l^ay da.o hamtheo t hai v^e, r^oi dt . . . . . d2y thay vaophuong trnhthu nh^at cu'a h^e. duo. c: − y = 0, gia'i ra: y = C et − C e−t, dt 1 2 t −t suy ra x = −4C1e − 2C2e ' ~ ' thoa man cac di^eu ki^e.n x(0) = 6; y(0) = −2, suy ra C1 = C2 = −1. V^a. y nghi^e.m cua h^e.: ( x = 4et + 2e−t y = −et − e−t dx = 3x − y + z dt . . dy 199) Gia'i h^e. phuong trnh: = −x + 5y − z dt dz = x − y + 3z. dt . . . 3 2 ' HD gia’i: Phuong trnhda. c trung: λ − 11λ + 36λ − 36 = 0, giai ra λ1 = 2; λ2 = . . . . ' 3; λ3 = 6. Tu doduo. c ba h^e. nghi^e.m co ban: e2t 0 −e2t e3t ; e3t ; e3t . e6t −2e6t e6t V^a. y nghi^e.m t^o'ng quat: x = C e2t + C e3t + C e6t 1 2 3 3t 6t y = C2e − 2C3e 2t 2t 6t z = −C1e + C2e + C3e . dy = y + z Tmnghi^em t^o'ng quat cu'a h^e phu.o.ng trnh: dx 200) . . dz = z − 4y. dx . . . . HD gia’i: Phuong trnhda. c trung: (λ − 1)(λ − 2) = 0, gia'i ra λ = 1; λ = 2. Tu do . . . 1 2 duo. c ba h^e. nghi^e.m co ba'n: ex 2e2x ; . −ex −3e2x V^a. y nghi^e.m t^o'ng quat: ( x 3x y = C1e + 2C2e x 2x z = −C1e − 3C2e .
- www.VNMATH.com 25 dx = 2x − 3y Gia'i h^e phu.o.ng trnh: dt 201) . dy = x − 2y + 2 sin t. dt . . . . . . HD gia’i: Phuong trnhda. c trung cocac nghi^e.m λ1 = −1; λ2 = 1. Tu doduo. c h^e. . e−t 3et nghi^e.m co ba'n: ; . e−t et ( −t t V^ay nghi^em t^o'ng quat: x = C1e + 3C2e . . −t t y = C1e + C2e . ( 0 −t 0 t ( 0 t Bi^en thi^enhang s^o: C 1e + 3C 2e = 0 C 1 = 3e sin t 0 −t 0 t ⇐⇒ 0 −t C 1e + C 2e = 2 sin t. C 2 = e sin t. 3 C (t) = et(sin t − cos t) Gia'i ra: 1 2 1 C (t) = − e−t(sin t + cos t). 2 2 ( −t t V^ay nghi^em t^o'ng quat cu'a h^e: x(t) = C1e + 3C2e − 3 cos t . . . −t t y(t) = C1e + C2e + sin t − 2 cos t.