Bài giảng Công nghệ 3G WCDMA UMTS - Nguyễn Phạm Anh Dũng

doc 135 trang ngocly 1330
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Công nghệ 3G WCDMA UMTS - Nguyễn Phạm Anh Dũng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docbai_giang_cong_nghe_3g_wcdma_umts_nguyen_pham_anh_dung.doc

Nội dung text: Bài giảng Công nghệ 3G WCDMA UMTS - Nguyễn Phạm Anh Dũng

  1. MỤC LỤC LỜI MỞ ĐẦU 1 CHƯƠNG 1. XU HƯỚNG PHÁT TRIỂN HỆ THỐNG THÔNG TIN ĐỘNG TOÀN CẦU 8 1.1 Xu hướng phát triển hệ thống thông tin di động trên thế giới 8 1.2 Các tổ chức chuẩn hoá 2.5 G và 3G trên thế giới 10 1.2.1 Giới thiệu chung về các tổ chức chuẩn hoá 10 1.2.2 3GPP 11 1.2.3 3GPP2 14 1.2.4 Mối quan hệ giữa 3GPP và 3GPP2 và ITU 15 1.3 Tình hình chuẩn hoá 2,5G và 3G 17 1.3.1 Mở đầu 17 1.3.2 Chuẩn hoá công nghệ truy nhập vô tuyến 17 1.3.3 Phân tích hai nhánh công nghệ chính tiến lên 3G 19 1.3.3.1 Hướng phát triển lên 3G sử dụng công nghệ WCDMA 19 1.3.3.2 Hướng phát triển lên 3G sử dụng công nghệ cdma2000. 21 1.3.4 Tổng kết 23 CHƯƠNG 2. TỔNG QUAN CÔNG NGHỆ WCDMA TRONG HỆ THỐNG UMTS 24 2.1 Nguyên lý CDMA 24 2.1.1 Nguyên lý trải phổ CDMA 24 2.1.2 Kỹ thuật trải phổ và giải trải phổ 25 2.1.3. Kỹ thuật đa truy nhập CDMA 25 2.2. Một số đặc trưng của lớp vật lý trong hệ thống WCDMA 27 2.2.1. Các mã trải phổ . 27 2.2.2. Phương thức song công. 28 2.2. 4. Phân tập đa đường- Bộ thu RAKE 29 2.2.5. Các kênh giao diện vô tuyến UTRA FDD 30 2.2.6. Trạng thái cell. 30 2.2.7. Cấu trúc Cell 32 2.3. Kiến trúc mạng 33 2.3.1 Kiến trúc hệ thống UMTS 33 2.3.2. Kiến trúc mạng truy nhập vô tuyến UTRAN. 36 a. Bộ điều khiển mạng vô tuyến 37 b. Nút B (Trạm gốc) 37 2.4. Tổng kết về công nghệ truy nhập vô tuyến WCDMA trong hệ thống UMTS 41 CHƯƠNG 3. ĐIỀU KHIỂN CÔNG SUẤT VÀ CHUYỂN GIAO TRONG QUẢN LÝ TÀI NGUYÊN VÔ TUYẾN. 44 3.1 Giới thiệu chung quản lý tài nguyên vô tuyến trong hệ thốngWCDMA. 44 3.1.1 Mục đích chung của quản lý tài nguyên vô tuyến 44 2
  2. 3.1.2. Các chức năng của quản lý tài nguyên vô tuyến RRM. 44 a. Điều khiển công suất 45 b. Điều khiển chuyển giao 45 c. Điều khiển thu nạp. 45 d. Điều khiển tải (điểu khiển nghẽn). 47 3.2 Điều khiển công suất 48 3.2.1 Giới thiệu chung 48 3.2.2 Điều khiển công suất nhanh 50 3.2.2.1 Độ lợi của điều khiển công suất nhanh 50 3.2.2.2 Phân tập và điều khiển công suất. 51 3.2.2.3 Điều khiển công suất trong chuyển giao mềm. 53 3.2.3 Điều khiển công suất vòng ngoài. 56 3.2.3.2 Tính toán chất lượng thu 57 3.2.3.3 Thuật toán điều khiển công suất vòng ngoài. 58 3.2.3.4 Các dịch vụ chất lượng cao 58 3.2.3.5 .Giới hạn biến động điều khiển công suất 59 3.2.3.6 Đa dịch vụ. 59 3.3 Chuyển giao 60 3.3.1 Khái quát về chuyển giao trong các hệ thống thông tin di động. 60 3.3.1.1 Các kiểu chuyển giao trong các hệ thống WCDMA 3G 61 3.3.1.2 Các mục đích của chuyển giao 62 3.3.1.3 Các thủ tục và phép đo đạc chuyển giao 63 3.3.2 Chuyển giao trong cùng tần số 64 3.3.2.1 Chuyển giao mềm 64 a. Nguyên lý chuyển giao mềm 64 b. Các thuật toán của chuyển giao mềm 67 c. Các đặc điểm của chuyển giao mềm. 69 3.3.2.2 Đo đạc chuyển giao 70 3.3.2.3 Lợi ích liên kết chuyển giao mềm 73 3.3.2.4 Tổng phí của chuyển giao mềm 75 3.3.2.5 Độ lợi dung lượng mạng của chuyển giao mềm. 77 3.3.3 Chuyển giao giữa các hệ thống WCDMA và GSM. 78 3.3.4 Chuyển giao giữa các tần số trong WCDMA 80 3.3.5 Tổng kết chuyển giao. 81 3.4 Tổng kết 82 CHƯƠNG 4. QUY HOẠCH MẠNG VÔ TUYẾN WCDMA 84 4.1 Giới thiệu chung 84 4.2 Định cỡ mạng 85 4.2.1 Phân tích vùng phủ. 86 4.2.1.1 Tính toán quỹ đường truyền vô tuyến. 87 4.2.2 Phân tích dung lượng 95 4.2.2.1 Tính toán hệ số tải 95 a. Hệ số tải đường lên. 95 3
  3. b. Hệ số tải đường xuống. 98 4.2.2.2 Hiệu suất phổ. 102 4.2.2.3 Dung lượng mềm 103 a. Dung lượng Erlang. 103 b. Các ví dụ về dung lượng mềm đường lên 104 4.3 Quy hoạch vùng phủ và dung lượng chi tiết 106 4.3.1 Dự đoán vùng phủ và dung lượng lặp. 106 4.3.2 Công cụ hoạch định. 107 4.3.2.1 Sự lặp lại trên đường lên và đường xuống 108 4.3.2.2 Mô hình hoá các chỉ tiêu mức liên kết. 108 4.4 Minh hoạ. 109 4.5 Tối ưu mạng 115 4.6 Tổng kết 117 KẾT LUẬN 118 PHỤ LỤC A. CÁC TỪ VIẾT TẮT 120 PHỤ LỤC B. CÁC KÊNH UTRA 124 PHỤ LỤC C. CÁC MÔ HÌNH TRUYỀN SÓNG. 126 TÀI LIỆU THAM KHẢO 130 4
  4. LỜI MỞ ĐẦU Ra đời vào những năm 40 của thế kỷ XX, thông tin di động được coi như là một thành tựu tiên tiến trong lĩnh vực thông tin viễn thông với đặc điểm các thiết bị đầu cuối có thể truy cập dịch vụ ngay khi đang di động trong phạm vi vùng phủ sóng. Thành công của con người trong lĩnh vực thông tin di động không chỉ dừng lại trong việc mở rộng vùng phủ sóng phục vụ thuê bao ở khắp nơi trên toàn thế giới, các nhà cung dịch vụ, các tổ chức nghiên cứu phát triển công nghệ di động đang nỗ lực hướng tới một hệ thống thông tin di động hoàn hảo, các dịch vụ đa dạng, chất lượng dịch vụ cao. 3G - Hệ thống thông tin di động thế hệ 3 là cái đích trước mắt mà thế giới đang hướng tới. Từ thập niên 1990, Liên minh Viễn thông Quốc tế đã bắt tay vào việc phát triển một nền tảng chung cho các hệ thống viễn thông di động. Kết quả là một sản phẩm được gọi là Thông tin di động toàn cầu 2000 (IMT-2000). IMT-2000 không chỉ là một bộ dịch vụ, nó đáp ứng ước mơ liên lạc từ bất cứ nơi đâu và vào bất cứ lúc nào. Để được như vậy, IMT-2000 tạo điều kiện tích hợp các mạng mặt đất và/hoặc vệ tinh. Hơn thế nữa, IMT-2000 cũng đề cập đến Internet không dây, hội tụ các mạng cố định và di động, quản lý di động (chuyển vùng), các tính năng đa phương tiện di động, hoạt động xuyên mạng và liên mạng Các hệ thống thông tin di động thế hệ 2 được xây dựng theo tiêu chuẩn GSM, IS-95, PDC, IS-38 phát triển rất nhanh vào những năm 1990. Trong hơn một tỷ thuê bao điện thoại di động trên thế giới, khoảng 863,6 triệu thuê bao sử dụng công nghệ GSM, 120 triệu dùng CDMA và 290 triệu còn lại dùng FDMA hoặc TDMA. Khi chúng ta tiến tới 3G, các hệ thống GSM và CDMA sẽ tiếp tục phát triển trong khi TDMA và FDMA sẽ chìm dần vào quên lãng. Con đường GSM sẽ tới là CDMA băng thông rộng (WCDMA) trong khi CDMA sẽ là cdma2000. Tại Việt Nam, thị trường di động trong những năm gần đây cũng đang phát triển với tốc độ tương đối nhanh. Cùng với hai nhà cung cấp dịch vụ di động lớn nhất 5
  5. là Vinaphone và Mobifone, Công Ty Viễn thông Quân đội (Vietel), S-fone và mới nhất là Công ty cổ phần Viễn thông Hà Nội và Viễn Thông Điện Lực tham gia vào thị trường di động chắc hẳn sẽ tạo ra một sự cạnh tranh lớn giữa các nhà cung cấp dịch vụ, đem lại một sự lựa chọn phong phú cho người sử dụng. Vì vậy, các nhà cung cấp dịch vụ di động Việt Nam không chỉ sử dụng các biện pháp cạnh tranh về giá cả mà còn phải nỗ lực tăng cường số lượng dịch vụ và nâng cao chất lượng dịch vụ để chiếm lĩnh thị phần trong nước . Điều đó có nghĩa rằng hướng tới 3G không phải là một tương lai xa ở Việt Nam. Trong số các nhà cung cấp dịch vụ di động ở Việt Nam, ngoài hai nhà cung cấp dịch vụ di động lớn nhất là Vinaphone và Mobifone, còn có Vietel đang áp dụng công nghệ GSM và cung cấp dịch vụ di động cho phần lớn thuê bao di động ở Việt Nam. Vì vậy khi tiến lên 3G, chắc chắn hướng áp dụng công nghệ truy nhập vô tuyến WCDMA để xây dựng hệ thống thông tin di động thế hệ 3 phải được xem xét nghiên cứu. Bai giang này không nghiên cứu cụ thể lộ trình phát triển từ mạng thông tin di động thế hệ 2 GSM tiến lên UMTS như thế nào, mà nghiên cứu những khía cạnh kỹ thuật của công nghệ truy nhập vô tuyến WCDMA (chế độ FDD) trong hệ thống UMTS. Bai giang gồm có 4 chương: Chương 1. Xu hướng phát triển của hệ thống thông tin di động toàn cầu: Chương này trình bày xu hướng phát triển lên 3G cầu, các tổ chức chuẩn hoá và quá trình chuẩn hóa các hệ thống thông tin di động toàn cầu. Chương 2. Nghiên cứu tổng quan công nghệ truy nhập WCDMA trong hệ thống UMTS: Chương này nghiên cứu từ những vấn đề lý thuyết liên quan đến công nghệ WCDMA đến những đặc trưng của công nghệ WCDMA, của hệ thống UMTS. Chương 3. Điều khiển công suất và điều khiển chuyển giao trong quản lý tài nguyên vô tuyến WCDMA: Chương này đề cập các thuật toán quản lý tài nguyên vô tuyến trong hệ thống WCDMA, trong đó trình bày cụ thể về điều khiển công suất và điều khiển chuyển giao, 2 thuật toán quan trọng và đặc trưng nhất trong hệ thống WCDMA. 6
  6. Chương 4. Quy hoạch mạng vô tuyến: Chương này trình bày về một bài toán quan trọng khi thiết kế và xây dựng hệ thống thông tin di động thế hệ 3 sử dụng công nghệ truy nhập vô tuyến WCDMA với những đặc trưng riêng. Hà nội, ngày 15 tháng 8 năm 2009 7
  7. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu Chương 1. XU HƯỚNG PHÁT TRIỂN HỆ THỐNG THÔNG TIN ĐỘNG TOÀN CẦU 1.1 Xu hướng phát triển hệ thống thông tin di động trên thế giới. Hệ thống thông tin di động thế hệ thứ nhất sử dụng công nghệ đa truy nhập theo tần số (FDMA) là hệ thống tế bào tương tự dung lượng thấp và chỉ có dịch vụ thoại, tồn tại là các hệ thống NMT (Bắc Âu), TACS (Anh), AMPS (Mỹ). Đến những năm 1980 đã trở nên quá tải khi nhu cầu về số người sử dụng ngày càng tăng lên. Lúc này, các nhà phát triển công nghệ di động trên thế giới nhận định cần phải xây dựng một hệ thống tế bào thế hệ 2 mà hoàn toàn sử dụng công nghệ số. Đó phải là các hệ thống xử lý tín hiệu số cung cấp được dung lượng lớn, chất lượng thoại được cải thiện, có thể đáp ứng các dịch truyền số liệu tốc độ thấp. Các hệ thống 2G là GSM (Global System for Mobile Communication - Châu Âu), hệ thống D-AMPS (Mỹ) sử dụng công nghệ đa truy nhập phân chia theo thời gian TDMA, và IS-95 ở Mỹ và Hàn Quốc sử dụng công nghệ đa truy nhập phân chia theo mã CDMA băng hẹp. Mặc dù hệ thống thông tin di động 2G được coi là những tiến bộ đáng kể nhưng vẫn gặp phải các hạn chế sau: Tốc độ thấp (GSM là 10kbps) và tài nguyên hạn hẹp. Vì thế cần thiết phải chuyển đổi lên mạng thông tin di động thế hệ tiếp theo để cải thiện dịch vụ truyền số liệu, nâng cao tốc độ bit và tài nguyên được chia sẻ Mạng thông tin di động 2G đã rất thành công trong việc cung cấp dịch vụ tới người sử dụng trên toàn thế giới, nhưng số lượng người sử dụng tăng nhanh hơn nhiều so với dự kiến ban đầu. Có thể đưa ra các thống kê về sự tăng trưởng của thị trường di động phân đoạn theo công nghệ như hình 1-1. Căn cứ các số liệu thống kê trên ta thấy GSM là một chuẩn vô tuyến di động 2G số lượng thuê bao lớn nhất trên toàn thế giới. Nhưng tốc độ dữ liệu bị hạn chế và số lượng người dùng tăng lên đặc biệt là người sử dụng đa phương tiện có nguy cơ không đáp ứng đủ nhu cầu của thị trường. 8
  8. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu Hình 1- 1 Thống kê sự tăng trưởng thị trường di động phân loại theo công nghệ Mặt khác, khi các hệ thống thông tin di động ngày càng phát triển, không chỉ số lượng người sử dụng điện thoại di động tăng lên, mở rộng thị trường, mà người sử dụng còn đòi hỏi các dịch vụ tiên tiến hơn không chỉ là các dịch vụ cuộc gọi thoại và dịch vụ số liệu tốc độ thấp hiện có trong mạng 2G. Nhu cầu của thị trường có thể phân loại thành các lĩnh vực sau:  Dịch vụ dữ liệu máy tính(Computer Data):  Số liệu máy tính (Computer Data)  E-mail  Truyền hình ảnh thời gian thực (Real time image transfer)  Đa phương tiện (Multimedia)  Tính toán di động (Computing)  Dịch vụ viễn thông (Telecommunication)  Di động (Mobility)  Hội nghị truyền hình (Video conferencing)  Điện thoại hình (Video Telephony)  Các dịch vụ số liệu băng rộng (Wide band data services)  Dich vụ nội dung âm thanh hình ảnh (Audio - video content)  Hình ảnh theo yêu cầu (Video on demand)  Các dịch vụ tương tác hình ảnh (Interactive video services)  Báo điện tử (Electronic newspaper)  Mua bán từ xa (Teleshopping)  Các dịch vụ internet giá trị gia tăng (Value added internet services  Dịch vụ phát thanh và truyền hình (TV& Radio contributions) 9
  9. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu Những lý do trên thúc đẩy các tổ chức nghiên cứu phát triển hệ thống thông tin di động trên thế giới tiến hành nghiên cứu và đã áp dụng trong thực tế chuẩn mới cho hệ thống thông tin di động: Thông tin di động 2,5G và 3G 1.2 Các tổ chức chuẩn hoá 2.5 G và 3G trên thế giới 1.2.1 Giới thiệu chung về các tổ chức chuẩn hoá. Trong mọi lĩnh vực, muốn áp dụng bất cứ công nghệ nào trên phạm vi toàn thế giới đều phải xây dựng một bộ tiêu chuẩn cho công nghệ đó để bắt buộc các nhà cung cấp dịch vụ, nhà sản xuất thiết bị hay các nhà khai thác phải tuân thủ nghiêm ngặt bộ tiêu chuẩn của công nghệ đó. Việc xây dựng bộ tiêu chuẩn cho một công nghệ thường do tổ chức hay cơ quan có thẩm quyền nghiên cứu đưa ra dự thảo đề xuất và nghiên cứu đánh giá. Lĩnh vực thông tin di động cũng không nằm ngoài nguyên tắc chung này. Một vấn đề cần quan tâm trong lĩnh vực di động là trên thế giới hiện nay đang tồn tại nhiều công nghệ di động khác nhau đang cùng tồn tại phát triển và cạnh tranh nhau để chiếm lĩnh thị phần. Nhu cầu thống nhất các công nghệ này thành một hệ thống thông tin di động đã xuất hiện từ lâu, nhưng gặp phải nhiều khó khăntrở ngại. Trên thức tế các công nghệ di động khác nhau vẫn song song tồn tại và phát triển. Điều này đồng nghĩa với việc trên thế giới có nhiều tổ chức và cơ quan chuẩn hoá khác nhau. Hiện nay trên thế giới, tham gia vào việc chuẩn hoá cho hệ thống thông tin di động 2,5G và 3G có các tổ chức sau: ITU-T (T-Telecommunications) Cụ thể là nhóm SSG (Special Study Group) ITU-R (R- Radio): Cụ thể là nhóm Working Group 8F –WG8F. 3GPP: 3rd Global Partnership Project 3GPP2: 3rd Global Partnership Project 2 IETF: Internet Engineering Task Force Các tổ chức phát triển tiêu chuẩn khu vực (SDO-Standard Development Oganization) Ngoài ra còn có các tổ chức khác trong đó có sự tham gia của các nhà khai thác để thích ứng và làm hài hoà sản phẩm trên cơ sở các tiêu chuẩn chung. Các nhà khai thác tham gia nhằm xây dựng và phát triển hệ thống thông tin di động một cách hợp lý, phù hợp với thực tế khai thác. Các tổ chức đó là: OHG – Operator’s Harmonisation Group 3G.IP: cụ thể là Working Group 8G- WG8G 10
  10. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu MWIF- Mobile Wireless Internet Forum Các tổ chức trên tuy hoạt động theo hướng khác nhau, dựa trên nền tảng các công nghệ khác nhau nhưng có cấu trúc và nguyên tắc hoạt động tương tự nhau. Tất cả các tổ chức này đều hướng tới mục tiêu chung là xây dựng mạng thông tin di động 3G. Đồng thời các tổ chức này đều có mối quan hệ hợp tác để giải quyết các vấn đề kết nối liên mạng và chuyển vùng toàn cầu. Hai tổ chức OHG và MWIF đưa ra các chuẩn để phát triển khả năng roaming và ghép nối giữa các mạng lõi 2G: GSM-MAP và ANS41. Mạng lõi ANSI-41 được sử dụng bởi các hệ thống giao diện vô tuyến AMPS, IS-136 và IS-95. Mạng lõi GSM-MAP được sử dụng bởi các hệ thống giao diện vô tuyến GSM. Cả 2 mạng lõi này đều sẽ phát triển lên 3G và luôn được liên kết hoạt động với nhau. Sự xuất hiện của 3 tổ chức OHG , 3G.IP và MWIP cho thấy nỗ lực để xây dựng một mạng lõi chung IP mặc dù điều đó chỉ trở thành hiện thực khi hệ thống 3,5G và 4G được xây dựng. Công việc chuẩn hoá và xây dựng tiêu chuẩn cho ANSI-41 được thực hiện bởi Uỷ ban TR.45.2 của TIA và quá trình phát triển mạng này lên 3G đang được thức hiện trong các nhóm xây dựng tiêu chuẩn kỹ thuật của 3GPP2. Mạng lõi dựa trên ANSI-41 sẽ được sử dụng bởi các mạng truy nhập vô tuyến dựa trên cdma2000. Công việc xây dựng tiêu chuẩn GSM đang được tiến hành bởi các uỷ ban SMG của ETSI và được làm cho phù hợp với yêu cầu của Mỹ trong T1P1.5. Mối quan hệ này vẫn giữ nguyên đối với cả việc chuẩn hoá 3G. Phát triển GSM lên 3G được thực hiện bởi 3GPP và được làm hài hoà với các yêu cầu của Mỹ trong T1P1. Mạng lõi dựa trên GSM-MAP sẽ được sử dụng bởi mạng truy nhập vô tuyến dựa trên UTRA. Như vậy 2 tổ chức chịu trách nhiệm chính trong việc xây dựng tiêu chuẩn cho hệ thống thông tin di động 3G là 3GPP và 3GPP2. Hai tổ chức này có nhiệm vụ hình thành và phát triển các kỹ thuật ở các lĩnh vực riêng nhằm thoả mãn các tiêu chuẩn kỹ thuật của hệ thống thông tin di động 3G thống nhất. Phần tiếp theo sẽ đề cập tới 2 tổ chức này. 1.2.2 3GPP Năm 1998, các cơ quan phát triển tiêu chuẩn SDO khu vực đã đồng ý thành lập một tổ chức chịu trách nhiệm tiêu chuẩn hoá UMTS, được đặt tên là 3GPP ( 3 rd Generation Partnership Project). Các thành viên sáng lập nên 3GPP bao gồm : ETSI- European Telecommunication Standard Institute- của Châu Âu ARIB- Association of Radio Industry Board- của Nhật Bản TTA- Telecommunication Technology Association- của Hàn Quốc 11
  11. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu T1 của Bắc Mỹ TTC- Telecommunication Technology Committee- của Nhật Bản CWTS- China Wireless Telecommunication Standard group - của Trung Quốc. Ngoài ra còn có các đối tác về tư vấn thị trường là: 3G.IP của Mỹ GSA của Anh GSM Association của Ireland IPv6 Forum của Anh UMTS Forum của Mỹ 3G American của Mỹ 3GPP còn có một số quan sát viên là các tổ chức phát triển tiêu chuẩn khu vực có đủ tiềm năng để trở thành thành viên chính thức trong tương lai. Các quan sát viên hiện tại là: TIA – Telecommunications Industries Association -của Mỹ TSACC-Telecommunications Standards AdvisoryCouncil of Canada- của Canada ACIF- Australian Communication Industry Forum - của Úc Các thành viên của 3GPP đã thống nhất rằng, công nghệ truy nhập vô tuyến là hoàn toàn mới và dựa trên WCDMA, các thành phần của mạng sẽ được phát triền trên nền tảng của các mạng thông tin di động thế hệ 2 đã có với nguyên tắc tận dụng cao nhất có thể. Vì mạng lõi dựa trên mô hình GSM đã chứng tỏ được hiệu quả trong sử dụng thực tế, các đầu cuối 3G cũng sẽ mang một card tháo lắp được để mang thông tin liên quan đến thuê bao và các chức năng cụ thể của nhà cung cấp dịch vụ theo cách giống như GSM sử dụng SIM. 3GPP được chia thành các nhóm tiêu chuẩn kỹ thuật (TSG – Technical Specification Group) chịu trách nhiệm về từng lĩnh vực nhất định như sau: TSG-SA: về dịch vụ và kiến trúc TSG-CN: về tiêu chuẩn hoá mạng lõi TSG-T: về thiết bị đầu cuối TSG-GERAN: về mạng truy nhập cho GSM và 2,5G TSG-RAN: về mạng truy nhập cho 3G Các nhóm kỹ thuật trên được quản lý bởi một nhóm phối hợp hoạt động dự án PCG (Project Co-ordination Group). Cấu trúc chức năng được trình bày trong hình 1-2 12
  12. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu CÊU TRóC B£N TRONG 3gpp Nhãm phèi hîp dù ¸n TSG TSG TSG TSG TSG C¸c khÝa c¹nh M¹ng truy M¹ng truy C¸c thiÕt bÞ M¹ng lâi hÖ thèng vµ nhËp v« tuyÕn nhËp v« tuyÕn ®Çu cuèi dÞch vô GSM/EDGE C¸c ®Æc tÝnh kü thuËt Hình 1- 2 Cấu trúc chức năng của PCG và TSG trong 3GPP Bảng 1- 1 Các tham số cơ bản của UTRA FDD và TDD, ARIB WCDMA FDD và TDD ETSI UTRA ARIB WCDMA [ Nhat ban ] FDD TDD FDD TDD Ph­¬ng ph¸p ®a WCDMA TD-CDMA WCDMA TD-CDMA truy nhËp 3,84 3,84 Tèc ®é chip Mcps 3,84 3,84 (1,024/7,68/15,36) (1,024/7,68/15,36) Kho¶ng c¸ch sãng 5 (1,25/10/20) 5MHz 5MHz 5(1,25/10/20)MHz mang MHz §é dµi khung 10ms 10ms 10ms 10ms Sè lÇn ®iÒu khiÓn c«ng suÊt trong 15 15 15 15 mét khe thêi gian Kho¶ng thêi gian Kh«ng tån t¹i 625s Kh«ng tån t¹i 625s mét khe thêi gian §iÒu chÕ sè liÖu QPSK QPSK QPSK/BPSK QPSK/BPSK (DL/UL) §iÒu chÕ tr¶i phæ QPSK QPSK QPSK/QPSK QPSK/QPSK (DL/UL*) HÖ sè tr¶i phæ 4-512 1,2,4,8,16 2-512 2-512 hµm cos n©ng hµm cos hµm cos n©ng hµm cos n©ng D¹ng xung r= 0,22 n©ng r= 0,22 r= 0,22 r= 0,22 *DL/UL - ®­êng xuèng/®­êng lªn Các tiêu chuẩn dành cho 3G mà 3GPP xây dựng được phát triển dựa trên giao diện vô tuyến GSM-MAP và UTRA WCDMA. Khái niệm UTRA bao gồm cả các chế độ hoạt động FDD và TDD để hỗ trợ một cách hiệu quả các nhu cầu dịch vụ UMTS 13
  13. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu khác nhau về các dịch vụ đối xứng và không đối xứng. Trong quá trình đánh giá UTRA trong ETSI SMG2, việc khảo sát được tập trung vào chế độ FDD. Khái niệm TD-CDMA được chấp thuận dùng cho chế độ TDD chứa đựng hài hoà các tham số giữa FDD và TDD. Các tham số của UTRA được trình bày trong bảng 1-1. Đề xuất WCDMA của ARIB bao gồm cả 2 chế độ hoạt động, FDD và TDD. Chế độ FDD của đề xuất này khá giống với chế độ FDD của ETSI UTRA. Tuy nhiên, chế độ TDD được thiết kế gần giống với chế độ FDD, nhưng chấp nhận một số đặc trưng riêng biệt như công nghệ điều khiển công suất vòng mở và phân tập phát. Sau quyết định vào tháng 1 năm 1998 của ETSI SMG, hệ thống truy nhập được đổi tên là TD-CDMA thay cho tên WCDMA trước đây, bởi vì một số nét đặc trưng của TDMA đã được kết hợp vào để tận dụng những ưu điểm về công nghệ của TD-CDMA. 1.2.3 3GPP2 3GPP2 được thành lập vào cuối năm 1998, với 5 thành viên chính thức là tổ chức phát triển sau tiêu chuẩn sau: ARIB- Association of Radio Industry Board- của Nhật Bản CWTS- China Wireless Telecommunication Standard - của Trung Quốc TIA- Telecommunication Industry Association – Của Bắc Mỹ TTA- Telecommunication Technology Association- Của Hàn Quốc TTC- Telecommunication Technology Council- của Nhật Bản Ngoài ra tổ chức này còn có một số các đối tác tư vấn thị trường như: CDG- The CDMA Development Group MWIF- Mobile Wireless Internet Forum IPv6 Forum Có thể nhận thấy rằng thành phần tham gia 2 cơ quan chuẩn hoá 3GPP và 3GPP2 về cơ bản là giống nhau, chỉ khác ở điểm 3GPP có sự tham gia của ETSI. Vì vậy dễ dàng suy ra về cơ bản, cấu trúc tổ chức, nguyên lý hoạt động của 2 cơ quan này gần giống nhau. Sự khác nhau chủ yếu của 2 cơ quan này nằm ở con đường để phát triển lên hệ thống 3G. Về cấu trúc chức năng, trước hết 3GPP2 có một ban chỉ đạo dự án- PSC (Project Steering Commitee). PSC sẽ quản lý toàn bộ công tác tiêu chuẩn hoá theo các nhóm kỹ thuật –TSG. 3GPP2 hiện nay có 4 nhóm TSG, bao gồm: TSG-A: nghiên cứu về các hệ thống giao diện mạng truy nhập TSG-C: về CDMA2000 TSG-S: về các khía cạnh dịch vụ và hệ thống 14
  14. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu TSG-X: về hoạt động liên kết các hệ thống. Ta có thể thấy công việc chính của công việc chính của 3GPP2 chính là xây dựng tiêu chuẩn hoá CDMA2000. CDMA2000 cung cấp một con đường phát triển lên 3G bằng cách sử dụng các tiêu chuẩn TIA/EIA-95B hiện có, bao gồm: TIA/EIA-95B: các tiêu chuẩn trạm di động và giao diện vô tuyến. IS-707: tiêu chuẩn cho các dịch vụ số liệu(dạng gói, không đồng bộ và fax) IS-127: tiêu chuẩn cho bộ mã hoá thoại tốc độ 8,5Kbps EVRC IS-733: tiêu chuẩn cho bộ mã hoá thoại tốc độ 13kbps IS-637: tiêu chuẩn cho dịch vụ nhắn tin ngắn (SMS) IS-638: quản lý các tham số và việc kích hoạt qua không gian (hỗ trợ việc cấu hình và kích hoạt dịch vụ của các trạm di động qua giao diện vô tuyến). IS-97 và IS-98: các tiêu chuẩn dành cho các hoạt động ở mức tối thiểu Cấu trúc kênh TIA/EIA-95 cơ bản. Các tiêu chuẩn mở rộng cho các cấu trúc kênh TIA/EIA-95B cơ bản bổ trợ, lớp ghép kênh và báo hiệu để hỗ trợ các kênh phát quảng bá (Kênh hoa tiêu , kênh tìm gọi, kênh đồng bộ) IS-634A: không chịu sự thay đổi quan trọng nào khi dùng cho CDMA2000; cấu trúc phân lớp của CDMA2000 dần dần tích hợp với cấu trúc thành phần của IS- 634A. TIA/EIA-41D: không cần thay đổi nhiều khi sử dụng cho CDMA2000; cấu trúc phân tầng của CDMA2000 tạo ra khả năng dễ tích hợp với các dịch vụ giá trị gia tăng. Các tiêu chuẩn của 3GPP2 được phát triển theo các pha sau đây: Pha 0: toàn bộ các tiêu chuẩn đã được các SDO hoàn thiện Pha 1: chủ yếu là các chỉ tiêu kỹ thuật cho Release 1 để kế thừa toàn bộ phần 2G IS-95A và IS-95B. Hoàn thiện vào năm 2000. Pha 2: bắt đầu từ giữa năm 2001 nhằm hỗ trợ khả năng IP Multimedia, phiên bản đầu tiên hoàn thiện trong năm 2002, các phiên bản sau trong năm 2003. Pha 3: thêm các chức năng theo hướng mạng lõi IP. Hiện nay giai đoạn này được khởi động. Ngoài ra, hiện nay CDMA2000 1xEV của 3GPP2 đã được ITU chính thức chấp thuận 3G. 1.2.4 Mối quan hệ giữa 3GPP và 3GPP2 và ITU 3GPP và 3GPP2 hợp tác lần đầu nhằm giải quyết vấn đề kết nối liên mạng, chuyển vùng toàn cầu, tập trung vào 3 khía cạnh chính: 15
  15. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu Truy nhập vô tuyến Thiết bị đầu cuối Mạng lõi Hoạt động hợp tác này chủ yếu thông qua OGH và các nhóm ad hoc có sự tham gia của cả 2 bên 3GPP và 3GPP2. Hiện nay, IETF là một trong các nhân tố mới để cùng với 3GPP và giải quyết hướng mạng lõi chung toàn IP. Mới đây, sau khi nghiên cứu HSDPA (3GPP) và 1xEV-DO (3GPP2), cả hai tổ chức này đang tiếp tục nỗ lực theo hướng mạng lõi IP chung qua các cuộc họp năm 2002. ITU chịu trách nhiệm phối hợp sự hoạt động của các tổ chức tiêu chuẩn hoá, cụ thể là 2 đơn vị chịu trách nhiệm trực tiếp: ITU-T SSG- Special Study Group ITU-R WP8F- Working Party 8F. Trong đó, ITU-T SSG có 3 nhóm làm việc với 7 vấn đề, giải quyết 90% công tác chuẩn hoá về mạng (Network Aspects), tập trung vào các mảng: Giao diện NNI Quản lý di động Yêu cầu giao thức Phát triển giao thức Ngược lại, ITU-R WP8F có trách nhiệm giải quyết 90% công tác chuẩn hoá về giao diện vô tuyến tập trung vào các nhiệm vụ : Các chỉ tiêu toàn diện của một hệ thống IMT-2000 Tiếp tục chuẩn hoá toàn cầu bằng cách kết hợp với các cơ quan tiêu chuẩn SDO và các Project (3GPP và 3GPP2) Xác định mục tiêu sau IMT-2000:3,5G và 4G Tâp trung vào phần mạng mặt đất (tăng tốc độ dữ liệu, mạng theo hướng IP) Phối hợp với ITU-R WP8P về vệ tinh, với ITU-T và ITU-D về các vấn đề liên quan. Vai trò của từng thành phần trong mối quan hệ giữa các tổ chức này có thể rút gọn như sau: 3GPP và 3GPP2: đảm bảo phát triển công nghệ và các chỉ tiêu giao diện vô tuyến cho toàn cầu; Các tổ chức tiêu chuẩn khu vực –SDO: làm thích ứng các tiêu chuẩn chung cho từng khu vực. Kết quả là sự xuất hiện của các tiêu chuẩn IMT-2000 trên cơ sở chỉ tiêu kỹ thuật của 3GPP và 3GPP2. 16
  16. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu ITU-T và ITU-R: đảm bảo khả năng tương thích và roaming toàn cầu với các chỉ tiêu. Cụ thể rõ việc phân công và trách nhiệm qua ITU-R.M 1457 và ITU-T Q.REF. Hiện nay, cả 3GPP, 3GPP2, ITU và IETF tiếp tục phối hợp chặt chẽ để giải quyết mạng lõi chung IP theo các công nghệ 3,5G và 4G. 1.3 Tình hình chuẩn hoá 2,5G và 3G 1.3.1 Mở đầu Hiện nay, các bộ tiêu chuẩn công nghệ 2,5G về cơ bản đã được hoàn thiện, cụ thể như sau: 3GPP đã hoàn thiện chỉ tiêu kỹ thuật GPRS, từ đó các tổ chức chuẩn hoá khu vực đã có bộ tiêu chuẩn kỹ thuật GPRS. Một số các nước thuộc nhóm công nghệ này như Châu Âu, Hồng Kông, Nhật Bản đã biên soạn hoặc chấp nhận nguyên vẹn chuẩn cho phù hợp với điều kiện công nghệ của mình. 3GPP2 đã hoàn thiện các chỉ tiêu kỹ thuật CDMA2000 1xEV-DO. Các tổ chức chuẩn hóa khu vực của các nước có công nghệ IS-95A hoặc IS-95B hầu hết đã có tiêu chuẩn áp dụng nguyên vẹn công nghệ 2,5G. Với công nghệ 3G, tình hình chuẩn hoá phức tạp hơn với 3 mảng chính sau: Công nghệ truy nhập vô tuyến Mạng lõi Giao diện với các hệ thống khác. 1.3.2 Chuẩn hoá công nghệ truy nhập vô tuyến Trên thế giới hiện đang tồn tại nhiều công nghệ thông tin di động 2G khác nhau với số vốn đầu tư tương đối lớn. Việc xây dựng một hệ thống thông tin di động tiên tiến hơn luôn đòi hỏi phải chú ý tới vấn đề lợi nhuận kinh tế, có nghĩa là các hệ thống thông tin di động mới phải tương thích ngược với các hệ thống 2G hiện có, để tận dụng sự đầu tư về cơ sở hạ tầng của các hệ thống cũ. Như vậy, mục tiêu phát triển đến một tiêu chuẩn duy nhất cho IMT-2000 là không thể đạt được. Trên thực tế, ITU đã chấp nhận sư tồn tại song song của 5 họ công nghệ khác nhau: IMT-MC (IMT-Multi Carrier): CDMA2000 IMT-DS (IMT- Direct Sequence): WCDMA –FDD IMT-TC: WCDMA-TDD IMT-SC: TDMA một sóng mang, còn gọi là UWC-136 và EDGE IMT-FT: DECT 17
  17. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu Các họ công nghệ này có nền tảng công nghệ khác nhau và được các cơ quan tổ chức tiêu chuẩn hoá khác nhau thực hiện các việc xây dựng chuẩn được trình bày trong hình 1-3 DIRECT TIME SINGLE MULTI- FREQUENCY SEQUENCE CODE CARRIER CARRIER TIME UTRA TDD UTRA FDD caùc toác ñoä chip UWC 136 cdma 2000 DECT cao vaø thaáp 3GPP UWCC 3GPP2 ETSI Hình 1- 3 Các họ công nghệ được ITU-R chấp nhận Trong năm 2002, ITU-R đã chấp thuận 7 loại công nghệ cụ thể, mà thực chất thuộc 5 họ công nghệ trên: CDMA đa sóng mang (cdma2000) CDMA1x-EV CDMA TDD (UTRA) CDMA TDD (TD-SCDMA) W-CDMA (UTRA - FDD) UWC-136 (FDD) FDMA/TDMA: DECT. Các công nghệ trên bao gồm: - Hai tiêu chuẩn TDMA: SC-TDMA (UWC-136) và MC-TDMA (DECT) - Ba tiêu chuẩn CDMA : MC-CDMA (cdma2000 ), DS-CDMA (WCDMA) và CDMA-TDD (bao gồm TD-SCDMA và UTRA-TDD). Ta xét các tiêu chuẩn TDD với các đặc điểm sau: - TDD có thể sử dụng các nguồn tài nguyên tần số khác nhau và không cần cặp tần số. - TDD phù hợp với truyền dẫn bất đối xứng về tốc độ giữa đường lên và đường xuống, đặc biệt với các dịch vụ dữ liệu dạng IP - TDD hoạt động ở cùng tần số cho đường lên và đường xuống, phù hợp cho việc sử dụng các kỹ thuật mới như anten thông minh - Chi phí thiết bị hệ thống TDD thấp hơn, có thể thấp hơn từ 20 đến 50% so với các hệ thống FDD. Tuy nhiên, hạn chế chính của hệ thống TDD là tốc độ di chuyển và diện tích phủ sóng. Các hệ thống TDD chỉ thích hợp với việc triển khai cho các dịch vụ đa phương 18
  18. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu tiện trong các khu vực mật độ cao và có yêu cầu cao về dung lượng thoại, dữ liệu và các dịch vụ đa phương tiện trong các khu vực tập trung thuê bao lớn. TD-SCDMA là công nghệ do Trung Quốc đề xuất, còn UTRA-TDD được xem là phần bổ sung cho UTRA-FDD tại những vùng có dung lượng rất cao. Hơn nữa các công nghệ này chưa có sản phẩm thương mại. Trên thực tế chỉ có 2 tiêu chuẩn quan trọng nhất đã có sản phẩm thương mại và có khả năng được triển khai rộng rãi trên toàn thế giới là WCDMA (FDD) và cdma2000. WCDMA được phát triển trên cơ sở tương thích với giao thức của mạng lõi GSM (GSM MAP), một hệ thống chiếm tới 65% thị trường thế giới. Còn cdma2000 nhằm tương thích với mạng lõi IS-41, hiện chiếm 15% thị trường. Quá trình phát triển lên 3G cũng sẽ tập trung vào 2 hướng chính này, có thể được tóm tắt trong hình 1-4. TACS GSM (900) GPRS WCDMA NMT GSM (1800) (900) GSM (1900) GPRS IS-136 (1900) IS-95 (J-STD-008) EDGE (1900) IS-136 TDMA (800) AMPS cdma2000 cdma2000 IS-95 1x Mx CDMA (800) SMR iDEN (800) 1G 2G 2.5G 3G Hình 1- 4 Quá trình phát triển lên 3G của 2 nhánh công nghệ chính 1.3.3 Phân tích hai nhánh công nghệ chính tiến lên 3G 1.3.3.1 Hướng phát triển lên 3G sử dụng công nghệ WCDMA WCDMA là một tiêu chuẩn thông tin di động 3G của IMT-2000 được phát triển chủ yếu ở Châu Âu với mục đích cho phép các mạng cung cấp khả năng chuyển vùng toàn cầu và để hỗ trợ nhiều dịch vụ thoại, dịch vụ đa phương tiện. Các mạng WCDMA được xây dựng dựa trên cơ sở mạng GSM, tận dụng cơ sở hạ tầng sẵn có 19
  19. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu của các nhà khai thác mạng GSM. Quá trình phát triển từ GSM lên CDMA qua các giai đoạn trung gian, có thể được tóm tắt trong sơ đồ sau đây: GSM GPRS EDGE WCDMA 1999 2000 2002 Hình 1- 5 Quá trình phát triển lên 3G theo nhánh sử dụng công nghệ WCDMA 1.3.3.1.1 GPRS GPRS là một hệ thống vô tuyến thuộc giai đoạn trung gian, nhưng vẫn là hệ thống 3G nếu xét về mạng lõi. GPRS cung cấp các kết nối số liệu chuyển mạch gói với tốc độ truyền lên tới 171,2Kbps (tốc độ số liệu đỉnh) và hỗ trợ giao thức Internet TCP/IP và X25, nhờ vậy tăng cường đáng kể các dịch vụ số liệu của GSM. Công việc tích hợp GPRS vào mạng GSM đang tồn tại là một quá trình đơn giản. Một phần các khe trên giao diện vô tuyến dành cho GPRS, cho phép ghép kênh số liệu gói được lập lịch trình trước đối với một số trạm di động. Phân hệ trạm gốc chỉ cần nâng cấp một phần nhỏ liên quan đến khối điều khiển gói (PCU- Packet Control Unit) để cung cấp khả năng định tuyến gói giữa các đầu cuối di động các nút cổng (gateway). Một nâng cấp nhỏ về phần mềm cũng cần thiết để hỗ trợ các hệ thống mã hoá kênh khác nhau. Mạng lõi GSM được tạo thành từ các kết nối chuyển mạch kênh được mở rộng bằng cách thêm vào các nút chuyển mạch số liệu và gateway mới, được gọi là GGSN (Gateway GPRS Support Node) và SGSN (Serving GPRS Support Node). GPRS là một giải pháp đã được chuẩn hoá hoàn toàn với các giao diện mở rộng và có thể chuyển thẳng lên 3G về cấu trúc mạng lõi. 1.3.3.1.2 EDGE EDGE (Enhanced Data rates for Global Evolution) là một kỹ thuật truyền dẫn 3G đã được chấp nhận và có thể triển khai trong phổ tần hiện có của các nhà khai thác TDMA và GSM. EDGE tái sử dụng băng tần sóng mang và cấu trúc khe thời gian của GSM, và được thiết kế nhằm tăng tốc độ số liệu của người sử dụng trong mạng GPRS hoặc HSCSD bằng cách sử dụng các hệ thống cao cấp và công nghệ tiên tiến khác. Vì vậy, cơ sở hạ tầng và thiết bị đầu cuối hoàn toàn phù hợp với EDGE hoàn toàn tương thích với GSM và GRPS. 1.3.3.1.3 WCDMA hay UMTS/FDD WCDMA (Wideband Code Division Multiple Access) là một công nghệ truy nhập vô tuyến được phát triển mạnh ở Châu Âu. Hệ thống này hoạt động ở chế độ 20
  20. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu FDD và dựa trên kỹ thuật trải phổ chuỗi trực tiếp (DSSS- Direct Sequence Spectrum) sử dụng tốc độ chip 3,84Mcps bên trong băng tần 5MHz. Băng tần rộng hơn và tốc độ trải phổ cao làm tăng độ lợi xử lý và một giải pháp thu đa đường tốt hơn, đó là đặc điểm quyết định để chuẩn bị cho IMT-2000. WCDMA hỗ trợ trọn vẹn cả dịch vụ chuyển mạch kênh và chuyển mạch gói tốc độ cao và đảm bảo sự hoạt động đồng thời các dịch vụ hỗn hợp với chế độ gói hoạt động ở mức hiệu quả cao nhất. Hơn nữa WCDMA có thể hỗ trợ các tốc độ số liệu khác nhau, dựa trên thủ tục điều chỉnh tốc độ. Chuẩn WCDMA hiện thời sử dụng phương pháp điều chế QPSK, một phương pháp điều chế tốt hơn 8-PSK, cung cấp tốc độ số liệu đỉnh là 2Mbps với chất lượng truyền tốt trong vùng phủ rộng. WCDMA là công nghệ truyền dẫn vô tuyến mới với mạng truy nhập vô tuyến mới, được gọi là UTRAN, bao gồm các phần tử mạng mới như RNC (Radio Network Controller) và NodeB (tên gọi trạm gốc mới trong UMTS) Tuy nhiên mạng lõi GPRS/EDGE có thể được sử dụng lại và các thiết bị đầu cuối hoạt động ở nhiều chế độ có khả năng hỗ trợ GSM/GPRS/EDGE và cả WCDMA. 1.3.3.2 Hướng phát triển lên 3G sử dụng công nghệ cdma2000. Hệ thống cdma2000 gồm một số nhánh hoặc giai đoạn phát triển khác nhau để hỗ trợ các dịch vụ phụ được tăng cường. Nói chung cdma2000 là một cách tiếp cận đa sóng mang cho các sóng có độ rộng n lần 1,25MHz hoạt động ở chế độ FDD. Nhưng công việc chuẩn hoá tập trung vào giải pháp một sóng mang đơn 1,25MHz (1x) với tốc độ chip gần giống IS-95. cdma2000 được phát triển từ các mạng IS-95 của hệ thống thông tin di động 2G, có thể mô tả quá trình phát triển trong hình vẽ sau: IS-95A IS-95B Cdma2000 1x Cdma2000 Mx 1999 2000 2002 Hình 1- 6 Quá trình phát triển lên 3G theo nhánh cdma2000. 1.3.3.2.1 IS-95B. IS-95B, hay cdmaOne được coi là công nghệ thông tin di động 2,5G thuộc nhánh phát triển cdma2000, là một tiêu chuẩn khá linh hoạt cho phép cung cấp dịch vụ số liệu tốc độ lên đến 115Kbps 1.3.3.2.2 cdma2000 1xRTT Giai đoạn đầu của cdma2000 được gọi là 1xRTT hay chỉ là 1xEV-DO, được thiết kế nhằm cải thiện dung lượng thoại cua IS-95B và để hỗ trợ khả năng truyền số 21
  21. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu liệu ở tốc độ đỉnh lên tới 307,2Kbps. Tuy nhiên, các thiết bị đầu cuối thương mại của 1x mới chỉ cho phép tốc độ số liệu đỉnh lên tới 153,6kbps. Những cải thiện so với IS- 95 đạt được nhờ đưa vào một số công nghệ tiên tiến như điều chế QPSK và mã hoá Turbo cho các dịch vụ số liệu cùng với khả năng điều khiển công suất nhanh ở đường xuống và phân tập phát. 1.3.3.2.3 cdma2000 1xEV-DO 1xEV-DO, được hình thành từ công nghệ HDR (High Data Rate) của Qualcomm, được chấp nhận với tên này như là một tiêu chuẩn thông tin di động 3G vào tháng 8 năm 2001 và báo hiệu cho sự phát triển của giải pháp đơn sóng mang đối với truyền số liệu gói riêng biệt. Nguyên lý cơ bản của hệ thống này là chia các dịch vụ thoại và dịch vụ số liệu tốc độ cao vào các sóng mang khác nhau. 1xEV-DO có thể được xem như một mạng số liệu “xếp chồng”, yêu cầu một sóng mang riêng. Để tiến hành các cuộc gọi vừa có thoại, vừa có số liệu trên cấu trúc “xếp chồng” này cần có các thiết bị hoạt động ở 2 chế độ 1x và 1xEV-DO. 1. 3.3.2.4 cdma2000 1xEV-DV Trong công nghệ 1xEV-DO có sự dư thừa về tài nguyên do sự phân biệt cố định tài nguyên dành cho thoại và tài nguyên dành cho số liệu. Do đó, CDG, nhóm phát triển CDMA, khởi đầu pha thứ ba của cdma2000 đưa các dịch vụ thoại và số liệu quay về chỉ dùng một sóng mang 1,25MHz và tiếp tục duy trì sự tương thích ngược với 1xRTT. Tốc độ số liệu cực đại của người sử dụng lên tới 3,1Mbps tương ứng với kích thước gói dữ liệu 3940 bit trong khoảng thời gian 1,25ms. Mặc dù kỹ thuật truyền dẫn cơ bản được định hình, vẫn có nhiều đề xuất công nghệ cho các thành phần chưa được quyết định kể cả tiêu chuẩn cho đường xuống của 1xEV-DV. 1.3.3.2.5 cdma2000 3x(MC- CDMA ) cdma2000 3x, hay 3xRTT, đề cập đến sự lựa chọn đa sóng mang ban đầu trong cấu hình vô tuyến cdma2000 và được gọi là MC-CDMA (Multi carrier) thuộc IMT-MC trong IMT-2000. Công nghệ này liên quan đến việc sử dụng 3 sóng mang 1x để tăng tốc độ số liệu và được thiết kế cho dải tần 5MHz (gồm 3 kênh 1,25Mhz). Sự lựa chọn đa sóng mang này chỉ áp dụng được trong truyền dẫn đường xuống. Đường lên trải phổ trực tiếp, giống như WCDMA với tốc độ chip hơi thấp hơn một chút 3,6864Mcps (3 lần 1,2288Mcps). 22
  22. Chương 1- Xu hướng phát triển của hệ thống thông tin di động toàn cầu 1.3.4 Tổng kết Như vậy, trên thế giới hiện đang tồn tại các công nghệ khác để xây dựng hệ thống thông tin di động 3G. Các nước khi lựa chọn các công nghệ 3G có thể căn cứ theo ITU-R M.1457 để xác định các chỉ tiêu chủ yếu của họ công nghệ truy nhập vô tuyến và xây dựng tiêu chuẩn trên cơ sở tập hợp biên soạn hoặc áp dụng nguyên vẹn theo các tiêu chuẩn của SDO sao cho phù hợp với điều kiện của mình. 23
  23. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Chương 2. TỔNG QUAN CÔNG NGHỆ WCDMA TRONG HỆ THỐNG UMTS. 2.1 Nguyên lý CDMA 2.1.1 Nguyên lý trải phổ CDMA Các hệ thống số được thiết kế để tận dụng dung lượng một cách tối đa. Theo nguyên lý dung lượng kênh truyền của Shannon được mô tả trong (2.1), rõ ràng dung lượng kênh truyền có thể được tăng lên bằng cách tăng băng tần kênh truyền. C = B. log2(1+S/N) (2.1) Trong đó B là băng thông (Hz), C là dung lượng kênh (bit/s), S là công suất tín hiệu và N là công suất tạp âm. Vì vậy, Đối với một tỉ số S/N cụ thể (SNR), dung lượng tăng lên nếu băng thông sử dụng để truyền tăng. CDMA là công nghệ thực hiện trải tín hiệu gốc thành tín hiệu băng rộng trước khi truyền đi. CDMA thường được gọi là Kỹ thuật đa truy nhập trải phổ (SSMA).Tỷ số độ rộng băng tần truyền thực với độ rộng băng tần của thông tin cần truyền được gọi là độ lợi xử lý (GP ) hoặc là hệ số trải phổ. GP = Bt / Bi hoặc GP = B/R (2.2) Trong đó Bt :là độ rộng băng tần truyền thực tế Bi : độ rộng băng tần của tín hiệu mang tin B : là độ rộng băng tần RF R : là tốc độ thông tin Mối quan hệ giữa tỷ số S/N và tỷ số E b/I0, trong đó Eb là năng lượng trên một bit, và I0 là mật độ phổ năng lượng tạp âm, thể hiện trong công thức sau : S Eb R Eb 1 (2.3) N I0 B I0 Gp Vì thế, với một yêu cầu E b/I0 xác định, độ lợi xử lý càng cao, thì tỷ số S/N yêu cầu càng thấp. Trong hệ thống CDMA đầu tiên, IS-95, băng thông truyền dẫn là 1.25MHz. Trong hệ thống WCDMA, băng thông truyền khoảng 5MHz. 24
  24. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Trong CDMA, mỗi người sử dụng được gán một chuỗi mã duy nhất (mã trải phổ) để trải tín hiệu thông tin thành một tín hiệu băng rộng trước khi truyền đi. Bên thu biết được chuỗi mã của người sử dụng đó và giải mã để khôi phục tín hiệu gốc. 2.1.2 Kỹ thuật trải phổ và giải trải phổ Trải phổ và giải trải phổ là hoạt động cơ bản nhất trong các hệ thống DS- CDMA. Dữ liệu người sử dụng ngụ ý là chuỗi bit được điều chế BPSK có tốc độ là R. Hoạt động trải phổ chính là nhân mỗi bit dữ liệu người sử dụng với một chuỗi n bit mã, được gọi là các chip. Ở đây, ta lấy n=8 thì hệ số trải phổ là 8, nghĩa là thực hiện điều chế trải phổ BPSK. Kết quả tốc độ dữ liệu là 8xR và có dạng xuất hiện ngẫu nhiên (giả nhiễu) như là mã trải phổ. Việc tăng tốc độ dữ liệu lên 8 lần đáp ứng việc mở rộng (với hệ số là 8) phổ của tín hiệu dữ liệu người sử dụng được trải ra. Tín hiệu băng rộng này sẽ được truyền qua các kênh vô tuyến đến đầu cuối thu. Hình 2- 1 Quá trình trải phổ và giải trải phổ Trong quá trình giải trải phổ, các chuỗi chip/dữ liệu người sử dụng trải phổ được nhân từng bit với cùng các chip mã 8 đã được sử dụng trong quá trình trải phổ. Như trên hình vẽ tín hiệu người sử dụng ban đầu được khôi phục hoàn toàn. 2.1.3. Kỹ thuật đa truy nhập CDMA Một mạng thông tin di động là một hệ thống nhiều người sử dụng, trong đó một số lượng lớn người sử dụng chia sẻ nguồn tài nguyên vật lý chung để truyền và nhận thông tin. Dung lượng đa truy nhập là một trong các yếu tố cơ bản của hệ thống. Kỹ thuật trải phổ tín hiệu cần truyền đem lại khả năng thực hiện đa truy nhập cho các hệ thống CDMA. Trong lịch sử thông tin di động đã tồn tại các công nghệ đa truy nhập khác nhau : TDMA, FDMA và CDMA. Sự khác nhau giữa chúng được chỉ ra trong hình 2-2. 25
  25. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Hình 2- 2 Các công nghệ đa truy nhập Trong hệ thống đa truy nhập theo tần số FDMA, các tín hiệu cho các người sử dụng khác nhau được truyền trong các kênh khác nhau với các tần số điều chế khác nhau. Trong hệ thống đa truy nhập phân chia theo thời gian TDMA, các tín hiệu của người sử dụng khác nhau được truyền đi trong các khe thời gian khác nhau. Với các công nghệ khác nhau, số người sử dụng lớn nhất có thể chia sẻ đồng thời các kênh vật lý là cố định. Tuy nhiên trong hệ thống CDMA, các tín hiệu cho người sử dụng khác nhau được truyền đi trong cùng một băng tần tại cùng một thời điểm. Mỗi tín hiệu người sử dụng đóng vai trò như là nhiễu đối với tín hiệu của người sử dụng khác, do đó dung lượng của hệ thống CDMA gần như là mức nhiễu, và không có con số lớn nhất cố định, nên dung lượng của hệ thống CDMA được gọi là dung lượng mềm. Hình 2-3 chỉ ra một ví dụ làm thế nào 3 người sử dụng có thể truy nhập đồng thời trong một hệ thống CDMA. Hình 2- 3 Nguyên lý của đa truy nhập trải phổ Tại bên thu, người sử dụng 2 sẽ giải trải phổ tín hiệu thông tin của nó trở lại tín hiệu băng hẹp, chứ không phải tín hiệu của bất cứ người nào khác. Bởi vì sự tương quan chéo giữa mã của người sử dụng mong muốn và các mã của người sử dụng khác là rất nhỏ : việc tách sóng kết hợp sẽ chỉ cấp năng lượng cho tín hiệu mong muốn và một phần nhỏ cho tín hiệu của người sử dụng khác và băng tần thông tin. 26
  26. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Độ lợi xử lý và đặc điểm băng rộng của quá trình xử lý đem lại nhiều lợi ích cho các hệ thống CDMA, như hiệu suất phổ cao và dung lượng mềm. Tuy nhiên, tất cả những lợi ích đó yêu cầu việc sử dụng kỹ thuật điều khiển công suất nghiêm ngặt và chuyển giao mềm, để tránh cho tín hiệu của người sử dụng này che thông tin của người sử dụng khác. 2.2. Một số đặc trưng của lớp vật lý trong hệ thống WCDMA. 2.2.1. Các mã trải phổ . Trong hệ thống trải phổ chuỗi trực tiếp DSSS, các bit dữ liệu được mã hoá với một chuỗi bit giả ngẫu nhiên (PN). Mạng vô tuyến UMTS mạng sử dụng một tốc độ chip cố định là 3.84Mcps đem lại một băng thông sóng mang xấp xỉ 5MHz. Dữ liệu được gửi qua giao diện vô tuyến WCDMA được mã hoá 2 lần trước khi được điều chế và truyền đi. Quá trình này được mô tả trong hình vẽ sau: Hình 2- 4 Quá trình trải phổ và trộn Như vậy trong quá trình trên có hai loại mã được sử dụng là mã trộn và mã định kênh. Mã định kênh: là các mã hệ số trải phổ biến đổi trực giao OVSF giữ tính trực giao giữa các kênh có các tốc độ và hệ số trải phổ khác nhau. Các mã lựa chọn được xác định bởi hệ số trải phổ. Cần phải chú ý rằng: Một mã có thể được sử dụng trong cell khi và chỉ khi không có mã nào khác trên đường dẫn từ một mã cụ thể đến gốc của cây mã hoặc là trên một cây con phía dưới mã đó được sử dụng trong cùng một cell. Có thể nói tất cả các mã được chọn lựa sử dụng hoàn toàn theo quy luật trực giao. Mã trộn. Mã trộn được sử dụng trên đường xuống là tập hợp chuỗi mã Gold. Các điều kiện ban đầu dựa vào số mã trộn n. Chức năng của nó dùng để phân biệt các trạm gốc khác nhau. Thông qua mô phỏng, n được xác định là tỉ số giữa tự tương quan và tương quan chéo khi thay đổi số chip bị cắt bớt do thay đổi tỉ số S/N. Kết quả được chỉ ra trong bảng 2-1. 27
  27. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Bảng 2- 1 Quan hệ giữa S/N và số chip bị cắt bớt Có hai loại mã trộn trên đường lên , chúng dùng để duy trì sự phân biệt giữa các máy di động khác nhau. Cả hai loại đều là mã phức. Mã thứ nhất là mã hoá Kasami rất rộng. Loại thứ hai là mã trộn dài đường lên thường được sử dụng trong cell không phát hiện thấy nhiều người sử dụngtrong một trạm gốc. Đó là chuỗi mã Gold có chiều dài là 241-1. 2.2.2. Phương thức song công. Hai phương thức song công được sử dụng trong kiến trúc WCDMA: Song công phân chia theo thời gian (TDD) và song công phân chia theo tần số (FDD). Phươ ng pháp FDD cần hai băng tần cho đường lên và đường xuống. Phương thức TDD chỉ cần một băng tần. Thông thường phổ tần số được bán cho các nhà khai thác theo các dải có thể bằng 2x10MHz, hoặc 2x15MHz cho mỗi bộ điều khiển. Mặc dù có một số đặc điểm khác nhau nhưng cả hai phương thức đều có tổng hiệu suất gần giống nhau. Chế độ TDD không cho phép giữa máy di động và trạm gốc có trễ truyền lớn, bởi vì sẽ gây ra đụng độ giữa các khe thời gian thu và phát. Vì vậy mà chế độ IDD phù hợp với các môi trường có trễ truyền thấp, cho nên chế độ TDD vận hành ở các pico cell. Một ưu điểm của TDD là tốc độ dữ liệu đường lên và đường xuống có thể rất khác nhau, vì vậy mà phù hợp cho các ứng dụng có đặc tính bất đối xứng giữa đường lên và đường xuống , chẳng hạn như Web browsing. Trong quá trình hoạch đ ịnh mạng, các ưu điểm và nhược điểm của hai phương pháp này có thể bù trừ. Đồ án này chỉ tập trung nghiên cứu chế độ FDD. Hình dưới đây chỉ ra sơ đồ phân bố phổ tần số của hệ thống UMTS Châu Âu. 28
  28. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS 1900 1920 1980 2010 2025 2110 2170 MHz Ñôn Ñôn baêng baêng Song baêng Ñöôøng leân Ñöôøng xuoáng Hình 2- 5 Phân bố phổ tần cho UMTS châu Âu. 2.2.3. Dung lượng mạng. Kết quả của việc sử dụng công nghệ đa truy nhập trải phổ CDMA là dung lư ợng của các hệ thống UMTS không bị giới hạn cứng, có nghĩa là một người sử dụng có thể bổ sung mà không gây ra nghẽn bởi số lượng phần cứng hạn chế. Hệ thống GSM có số lượng các liên kết và các kênh cố định chỉ cho phép mật độ lưu lượng lớn nhất đã được tính toán và hoạch định trước nhờ sử dụng các mô hình thống kê. Trong hệ thống UMTS bất cứ người sử dụng mới nào sẽ gây ra một lượng nhiễu bổ sung cho những người sử dụng đang có mặt trong hệ thống, ảnh hưởng đến tải của hệ thống. Nếu có đủ số mã thì mức tăng nhiễu do tăng tải là cơ cấu giới hạn dung lượng chính trong mạng. Việc các cell bị co hẹp lại do tải cao và việc tăng dung lượng của các cell mà các cell lân cận nó có mức nhiễu thấp là các hiệu ứng thể hiện đặc điểm dung lượng xác định nhiễu trong các mạng CDMA. Chính vì thế mà trong các mạng CDMA có đặc điểm “dung lượng mềm”. Đặc biệt, khi quan tâm đến chuyển giao mềm thì các cơ cấu này làm cho việc hoạch định mạng trở nên phức tạp. 2.2. 4. Phân tập đa đường- Bộ thu RAKE. Truyền sóng vô tuyến trong kênh di động mặt đất được đặc trưng bởi các sự phản xạ, sự suy hao khác nhau của năng lượng tín hiệu. Các hiện tượng này gây ra do các vật cản tự nhiên như toà nhà, các quả đồi dẫn đến hiệu ứng truyền sóng đa đư ờng. 29
  29. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Hình 2- 6 Truyền sóng đa đường Hiệu ứng đa đường thường gây ra nhiều khó khăn cho các hệ thống truyền dẫn vô tuyến. Một trong những ưu điểm của các hệ thống DSSS là tín hiệu thu qua các nhánh đa đường với trễ truyền khác nhau và cường độ tín hiệu khác nhau lại có thể cải thiện hiệu suất của hệ thống. Để kết hợp các thành phần từ các nhánh đa đư ờng một cách nhất quán, cần thiết phải tách đúng các thành phần đó. Trong các hệ thống WCDMA, bộ thu RAKE được sử dụng để thực hiện chức năng này. Một bộ thu RAKE bao gồm nhiều bộ thu được gọi là “finger”. Bộ thu RAKE sử dụng các bộ cân bằng và các bộ xoay pha để chia năng lượng của các thành phần tín hiệu khác nhau có pha và biên độ thay đổi theo kênh trong sơ đồ chòm sao. Sau khi điều chỉnh trễ thời gian và cường độ tín hiệu, các thành phần khác nhau đó được kết hợp thành một tín hiệu với chất lượng cao hơn. Quá trình này được gọi là quá trình kết hợp theo tỉ số lớn nhất (MRC), và chỉ có các tín hiệu với độ trễ tương đối cao hơn độ rộng thời gian của một chip mới được kết hợp. Quá trình kết hợp theo tỉ số lớn nhất sử dụng tốc độ chip là 3.84Mcps tương ứng với 0.26µs hoặc là chênh lệch về độ dài đường dẫn là 78m. Phương pháp này giảm đáng kể hiệu ứng phadinh bởi vì khi các kênh có đặc điểm khác nhau được kết hợp thì ảnh hưởng của phadinh nhanh được tính bình quân. Độ lợi thu được từ việc kết hợp nhất quán các thành phần đa đường tương tự với độ lợi của chuyển giao mềm có được bằng cách kết hợp hai hay nhiều tín hiệu trong quá trình chuyển giao. 2.2.5. Các kênh giao diện vô tuyến UTRA FDD. Giao diện vô tuyến UTRA FDD có các kênh logic, chúng được ánh xạ vào các kênh chuyển vận, các kênh chuyển vận lại ánh xạ vào kênh vật lý. Hình vẽ sau chỉ ra s ơ đồ các kênh và sự ánh xạ của chúng vào các kênh khác. 30
  30. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Hình 2- 7 Sơ đồ ánh xạ giữa các kênh khác nhau. Phụ lục B sẽ chỉ ra chi tiết các kênh UTRA khác nhau. 2.2.6. Trạng thái cell. Nhìn dưới góc độ UTRA, UE có thể ở chế độ “rỗi” hoặc ở chế độ “kết nối”. Trong chế độ “rỗi”, máy di động được bật và bắt được kênh điều khiển của một cell nào đó, nhưng phần UTRAN của mạng không có thông tin nào về UE. UE chỉ có thể được đánh địa chỉ bởi một thông điệp (chẳng hạn như thông báo tìm gọi) được phát quảng bá đến tất cả người sử dụng trong một cell. Trạng thái chế độ “rỗi” cũng được gọi là “trạng thái nghỉ trong cell”. UE có thể chuyển sang chế độ “kết nối” bằng cách yêu cầu thiết lập một kết nối RRC. Hình vẽ sau đây chỉ ra các trạng thái và sự chuyển tiếp các trạng thái cho một UE bao gồm cả các chế độ GSM/GPRS. 31
  31. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Cheá ñoä Cheá ñoä keát noái UTRA “Roãi” RRC Cell DCH Cell PCH UTRAN Nghæ ôû trong cell ôû trong Nghæ Cell FACH URA PCH Cheá ñoä keát noái GSM GSM/GPRS Cheá ñoä keát noái GPRS Nghæ ôû trong cell ôû trong Nghæ Hình 2- 8 Các chế độ của UE và các trạng thái điều khiển tài nguyên vô tuyến Nhìn chung việc ấn định các kênh khác nhau cho một người sử dụng và việc đ iểu khiển tài nguyên vô tuyến được thực hiện bởi giao thức Quản lý tài nguyên vô tuyến. Trong chế độ “kết nối” của UTRA, có 4 trạng thái RRC mà UE có thể chuyển đổi giữa chúng: Cell DCH, Cell FACH, Cell PCH và URA PCH. Trong trạng thái Cell DCH, UE được cấp phát một kênh vật lý riêng trên đường lên và đường xuống. Trong 3 trạng thái khác UE không được cấp phát kênh riêng. Trong trạng thái Cell FACH, UE giám sát một kênh đường xuống và được cấp phát một kênh FACH trên đường lên. Trong trạng thái này, UE thực hiện việc chọn lựa lại cell. Bằng cách gửi thông điệp cập nhật cell, RNC biết được vị trí của UE ở mức cell. Trong trạng thái Cell PCH và URA PCH, UE chọn lựa kênh tìm gọi (PCH) và sử dụng việc tiếp nhận không liên tục (DRX) để giám sát kênh PCH đã chọn lựa thông qua một kênh liên kết PICH. Trên đường lên không có hoạt động nào liên quan đến trạng thái này. Sự khác nhau giữa 2 trạng thái này như sau: Trong trạng thái Cell PCH vị trí của UE được nhận biết ở mức cell tuỳ theo việc thực hiện cập nhật cell cuối cùng. Trong trạng thái URA PCH, vị trí của UE được nhận biết ở mức vùng đă ng ký UTRAN (URA) tuỳ theo việc thực hiện cập nhật URA cuối cùng trong trạng thái Cell FACH. 2.2.7. Cấu trúc Cell. 32
  32. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Trong suốt quá trình thiết kế của hệ thống UMTS cần phải chú ý nhiều hơn đ ến sự phân tập của môi trường người sử dụng. Các môi trường nông thôn ngoài trời, đô thị ngoài trời, hay đô thị trong nhà được hỗ trợ bên cạnh các mô hình di động khác nhau gồm người sử dụng tĩnh, người đi bộ đến người sử dụng trong môi trường xe cộ đang chuyển động với vận tốc rất cao. Để yêu cầu một vùng phủ sóng rộng khắp và khả năng roaming toàn cầu, UMTS đã phát triển cấu trúc lớp các miền phân cấp với khả năng phủ sóng khác nhau. Lớp cao nhất bao gồm các vệ tinh bao phủ toàn bộ trái đ ất; Lớp thấp hơ n hình thành nên mạng truy nhập vô tuyến mặt đ ất UTRAN. Mỗi lớp được xây dựng từ các cell, các lớp càng thấp các vùng địa lý bao phủ bởi các cell càng nhỏ. Vì vậy các cell nhỏ được xây dựng để hỗ trợ mật độ người sử dụng cao hơn. Các cell macro đề nghị cho vùng phủ mặt đất rộng kết hợp với các micro cell để tăng dung lượng cho các vùng mật độ dân số cao. Các cell pico được dùng cho các vùng được coi như là các “điểm nóng” yêu cầu dung lượng cao trong các vùng hẹp (ví dụ như sân bay ). Những điều này tuân theo 2 nguyên lý thiết kế đ ã biết trong việc triển khai các mạng tế bào: các cell nhỏ hơn có thể được sử dụng để tăng dung lượng trên một vùng địa lý, các cell lớn hơn có thể mở rộng vùng phủ sóng. Do các nhu cầu và các đặc tính của một môi trường văn phòng trong nhà khác với yêu cầu của người sử dụng đang đi với tốc độ cao tại vùng nông thôn, diễn đàn UMTS đã phát triển 6 môi trường hoạt động. Đối với mỗi mô hình mật độ người sử dụng có thể trên một km2 và các loại cell được dự đoán cho các mô hình có tính di đ ộng thấp, trung bình, cao. 33
  33. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Hình 2- 9 Cấu trúc cell UMTS. 2.3. Kiến trúc mạng 2.3.1 Kiến trúc hệ thống UMTS Hệ thống thông tin di động thế hệ 3 UMTS tận dụng kiến trúc đã có trong hầu hểt các hệ thống thông tin di động thế hệ 2, và thậm chí cả thế hệ thứ nhất. Điều này được chỉ ra trong các đặc tả kỹ thuật 3GPP Hệ thống UMTS bao gồm một số các phần tử mạng logic, mỗi phần tử có một có một chức năng xác định. Theo tiêu chuẩn, các phần tử mạng được định nghĩa tại mức logic, nhưng có thể lại liên quan đến việc thực thi ở mức vật lý. Đặc biệt là khi có một số các giao diện mở (đối với một giao diện được coi là “mở”, thì yêu cầu giao diện đó phải được định nghĩa một cách chi tiết về các thiết bị tại các điểm đầu cuối mà có thể cung cấp bởi 2 nhà sản xuất khác nhau). Các phần tử mạng có thể được nhóm lại nếu có các chức năng giống nhau, hay dựa vào các mạng con chứa chúng. Theo chức năng thì các phần tử mạng được nhóm thành các nhóm: + Mạng truy nhập vô tuyến RAN (Mạng truy nhập vô tuyến mặt đất UMTS là UTRAN). Mạng này thiết lập tất cả các chức năng liên quan đến vô tuyến. + Mạng lõi (CN): Thực hiện chức năng chuyển mạch và định tuyến cuộc gọi và kết nối dữ liệu đến các mạng ngoài. + Thiết bị người sử dụng (UE) giao tiếp với người sử dụng và giao diện vô tuyến. 34
  34. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Kiến trúc hệ thống ở mức cao được chỉ ra trong hình 2-10 Uu Iu UE UTRAN CN Hình 2- 10 Kiến trúc hệ thống UMTS ở mức cao Theo các đặc tả chỉ ra trong quan điểm chuẩn hóa, cả UE và UTRAN đều bao gồm các giao thức hoàn toàn mới, việc thiết kế chúng dựa trên nhu cầu của công nghệ vô tuyến WCDMA mới. Ngược lại, việc định nghĩa mạng lõi (CN) được kế thừa từ GSM. Điều này đem lại cho hệ thống có công nghệ truy nhập vô tuyến mới một nền tảng mang tính toàn cầu là công nghệ mạng lõi đã có sẵn, như vậy sẽ thúc đẩy sự quảng bá của nó, mang lại ưu thế cạnh tranh chẳng hạn như khả năng roaming toàn cầu. Hệ thống UMTS có thể chia thành các mạng con có thể hoạt động độc lập hoặc hoạt động liên kết các mạng con khác và nó phân biệt với nhau bởi số nhận dạng duy nhất. Mạng con như vậy gọi là mạng di động mặt đất UMTS (PLMN), các thành phần của PLMN được chỉ ra trong hình 2-11. Iu Uu Nót B MSC/ PLMN, PSTN, GMSC RNC VLR ISDN USIM Nót B HLR Cu Iub Iur Nót B ME RNC SGSN GGSN Internet Nót B UE UTRAN CN M¹ng ngoµi Hình 2- 11 Các thành phần của mạng trong PLMN Thiết bị người sử dụng (UE) bao gồm 2 phần: Thiết bị di động (ME) là đầu cuối vô tuyến sử dụng để giao tiếp vô tuyến qua giao diện Uu. Modul nhận dạng thuê bao UMTS (USIM) là một thẻ thông minh đảm nhận việc xác nhận thuê bao, thực hiện thuật toán nhận thực, và lưu giữ khoá mã mật, khoá nhận thực và một số các thông tin về thuê bao cần thiết tại đầu cuối. UTRAN cũng bao gồm 2 phần tử: 35
  35. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Nút B: chuyển đổi dữ liệu truyền giữa giao diện Iub và Uu. Nó cũng tham gia vào quản lý tài nguyên vô tuyến. Bộ điều khiển mạng vô tuyến (RNC) sở hữu và điều khiển nguồn tài nguyên vô tuyến trong vùng của nó (gồm các Nút B nối với nó). RNC là điểm truy cập dịch vụ cho tất cả các dịch vụ mà UTRAN cung cấp cho mạng lõi. Các phần tử chính của mạng lõi GSM: HLR (Bộ đăng ký thường trú) là một cơ sở dữ liệu trong hệ thống thường trú của người sử dụng, lưu trữ các bản gốc các thông tin hiện trạng dịch vụ người sử dụng, hiện trạng về dịch vụ bao gồm: thông tin về dịch vụ được phép sử dụng, các vùng roaming bị cấm, thông tin các dịch vụ bổ sung như: trạng thái các cuộc gọi đi, số các cuộc gọi đi Nó được tạo ra khi người sử dụng mới đăng ký thuê bao với hệ thống, và được lưu khi thuê bao còn thời hạn. Với mục đích định tuyến các giao dịch tới UE (các cuộc gọi và các dịch vụ nhắn tin ngắn), HLR còn lưu trữ các thông tin vị trí của UE trong phạm vi MSC/VLR hoặc SGSN. MSC/VLR (Trung tâm chuyển mạch dịch vụ di động/Bộ đăng ký tạm trú) là một bộ chuyển mạch(MSC) và cơ sở dữ liệu(VLR) phục vụ cho UE ở vị trí tạm thời của nó cho các dịch vụ chuyển mạch kênh. Chức năng MSC được sử dụng để chuyển mạch các giao dịch sử dụng chuyển mạch kênh, chức năng VLR là lưu trữ bản sao về hiện trạng dịch vụ người sử dụng là khách và thông tin chính xác về vị trí của thuê bao khách trong toàn hệ thống. Phần của hệ thống được truy nhập thông qua MSC/VLR thường là chuyển mạch kênh. GMSC – (MSC cổng): là một bộ chuyển mạch tại vị trí mà mạng di động mặt đất công cộng UMTS kết nối với mạng ngoài. Tất các kết nối chuyển mạch kênh đến và đi đều phải qua GMSC. SGSN (Nút hỗ trợ GPRS phục vụ) có chức năng tương tự như MSC/VLR nhưng thường được sử dụng cho các dịch vụ chuyển mạch gói. GGSN (Node cổng hỗ trợ GPRS) có chức năng gần giống GMSC nhưng phục vụ các dịch vụ chuyển mạch gói. Mạng ngoài có thể chia thành 2 nhóm: Các mạng chuyển mạch kênh: Các mạng này cung cấp các kết nối chuyển mạch kênh, giống như dịch vụ điện thoại đang tồn tại Ví dụ như ISDN và PSTN. Các mạng chuyển mạch gói: Các mạng này cung cấp các kết nối cho các dịch vụ dữ liệu gói, chẳng hạn như mạng Internet. Các giao diện mở cơ bản của UMTS: 36
  36. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Giao diện Cu: Đây là giao diện giữa thẻ thông minh USIM và ME. Giao diện này tuân theo tiêu chuẩn cho các thẻ thông minh. Giao diện Uu: Đây là giao diện vô tuyến WCDMA. Uu là giao diện nhờ đó UE truy cập được với phần cố định của hệ thống, và vì thế có thể là phần giao diện mở quan trọng nhất trong UMTS. Giao diện Iu: Giao diện này kết nối UTRAN tới mạng lõi. Tương tự như các giao diện tương thích trong GSM, là giao diện A (đối với chuyển mạch kênh), và Gb (đối với chuyển mạch gói), giao diện Iu đem lại cho các bộ điều khiển UMTS khả năng xây dựng được UTRAN và CN từ các nhà sản xuất khác nhau. Giao diện Iur: Giao diện mở Iur hỗ trợ chuyển giao mềm giữa các RNC từ các nhà sản xuất khác nhau, và vì thế bổ sung cho giao diện mở Iu. Giao diện Iub: Iub kết nối một Nút B và một RNC. UMTS là một hệ thống điện thoại di động mang tính thương mại đầu tiên mà giao diện giữa bộ điều khiển và trạm gốc được chuẩn hoá như là một giao diện mở hoàn thiện. Giống như các giao diện mở khác, Iub thúc đẩy hơn nữa tính cạnh tranh giữa các nhà sản xuất trong lĩnh vực này. 2.3.2. Kiến trúc mạng truy nhập vô tuyến UTRAN. Kiến trúc UTRAN được mô tả như hình 2-12. Iu CS Uu Nuùt B MSC/ RNC VLR USIM Nuùt B RNS Cu Iub Iur Nuùt B ME RNC SGSN Nuùt B RNS Iu PS UE CN UTRAN Hình 2- 12 Kiến trúc UTRAN. UTRAN bao gồm một hay nhiều phân hệ mạng vô tuyến (RNS). Một RNS là một mạng con trong UTRAN và bao gồm một Bộ điều khiển mạng vô tuyến (RNC) và một hay nhiều Nút B. Các RNC có thể được kết nối với nhau thông qua một giao diện Iur. Các RNC và Nút B được kết nối với nhau qua giao diện Iub. 37
  37. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Các yêu cầu chính để thiết kế kiến trúc, giao thức và chức năng UTRAN: Tính hỗ trợ của UTRAN và các chức năng liên quan: Yêu cầu tác động tới thiết kế của UTRAN là các yêu cầu hỗ trợ chuyển giao mềm (một thiết bị đầu cuối kết nối tới mạng thông qua 2 hay nhiều cell đang hoạt động) và các thuật toán quản lý nguồn tài nguyên vô tuyến đặc biệt của WCDMA. Làm tăng sự tương đồng trong việc điều khiển dữ liệu chuyển mạch gói và chuyển mạch kênh, với một ngăn xếp giao thức giao diện vô tuyến duy nhất và với việc sử dụng cùng một giao diện cho các kết nối từ UTRA đến miền chuyển mạch gói và chuyển mạch kênh của mạng lõi. Làm tăng tính tương đồng với GSM. Sử dụng phương thức vận chuyển ATM như là cơ cấu chuyển vận chính trong UTRA. Sử dụng kiểu chuyển vận trên cơ sở IP như là cơ cấu chuyển vận thay thế trong UTRAN kể từ Release 5 trở đi. a. Bộ điều khiển mạng vô tuyến Bộ điều khiển mạng vô tuyến (RNC) là phần tử mạng chịu trách nhiệm điểu khiển nguồn tài nguyên vô tuyến của UTRAN. Nó giao tiếp với mạng lõi (thường là với một MSC và một SGSN) và cũng là phần tử cuối cùng của giao thức điểu khiển nguồn tài nguyên vô tuyến mà xác định các thông điệp và thủ tục giữa máy di động và UTRAN. Về mặt logic, nó tương ứng với BSC trong GSM. *Vai trò logic của RNC. RNC điều khiển một Nút B (như là vạch giới hạn cho giao diện Iub tới Nút B) được coi như là bộ RNC đang điều khiển (CRNC) của Nút. Bộ điều khiển CRNC chịu trách nhiệm điều khiển tải và điều khiển nghẽn cho cell của nó, và điều khiển thu nhận và phân bố mã cho liên kết vô tuyến được thiết lập trong các cell. Trong trường hợp một kết nối UTRAN, máy di động sử dụng nguồn tài nguyên từ nhiều phân hệ mạng vô tuyến RNS, thì các RNS bao gồm 2 chức năng logic riêng biệt (về phương diện kết nối máy di động - UTRAN này). RNC phục vụ (SRNC): RNC cho mỗi máy di động là một RNC mà xác định biên giới cả liên kết Iu cho sự vận chuyển dữ liệu người sử dụng và báo hiệu RANAP tương thích qua mạng lõi (kết nối này được gọi là kết nối RANAP). SRNC cũng xác định biên giới của Báo hiệu điều khiển nguồn tài nguyên vô tuyến, nó là giao thức báo hiệu giữa UE và UTRAN. Nó thực hiện xử lý ở lớp 2 cho các dữ liệu chuyển qua giao diện vô tuyến. Hoạt động Quản lý nguồn tài nguyên vô tuyến cơ bản, như là ánh xạ các thông số mang thông tin truy nhập vô tuyến thành các thông số kênh chuyển vận giao diện vô tuyến, quyết định chuyển giao , và điều khiển công suất 38
  38. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS vòng bên ngoài. Các hoạt động này được thực thi trong SNRC. SRNC cũng có thể là CRNC của một số Nút B sử dụng bởi máy di động cho kết nối với UTRAN. Một UE kết nối với UTRAN thì chỉ có duy nhất một SRNC. Bộ RNC trôi ( DRNC): DRNC có thể là bất cứ RNC nào ngoài SRNC, nó điều khiển các cell sử dụng bởi máy di động. Nếu cần thiết, DRNC có thể thực hiện kết hợp hay chia nhỏ phân tập macro. DRNC không thực hiện xử lý dữ liệu người sử dụng ở lớp 2, nhưng định tuyến một cách trong suốt dữ liệu giữa giao diện Iub và Iur, ngoại trừ khi UE đang sử dụng một kênh chuyển vận dùng chung. Một UE có thể không có, có một hoặc có nhiều DRNC. Chú ý rằng một RNC ở mức vật lý bao gồm toàn bộ các chức năng CRNC, SRNC và DRNC. b. Nút B (Trạm gốc) Chức năng chính của Nút B là để thực hiện xử lý ở lớp 1 giao diện vô tuyến (ghép xen và mã hoá kênh, thích ứng tốc độ, trải phổ .v.v.). Nó cũng thực hiện một số hoạt động Quản lý tài nguyên vô tuyến như là điều khiển công suất vòng bên trong. Về mặt logic nó tương thích với Trạm gốc GSM. 2.4 Các dịch vụ và ứng dụng UMTS. 2.4.1. Giới thiệu. Đặc điểm mới nổi bật của UMTS là tốc độ bit người sử dụng cao hơn: có thể đạt được tốc độ của kết nối chuyển mạch kênh 384kbps, kết nối chuyển mạch gói lên tới 2Mbps. Tốc độ bit dữ liệu cao hơn cung cấp các dịch vụ mới như điện thoại hình, và tải dữ liệu nhanh hơn. So với GSM và các mạng di động đang tồn tại, UMTS cung cấp các đặc tính mới và quan trọng, đó là nó cho phép thoả thuận các đặc tính của một bộ mang vô tuyến. Các thuộc tính định nghĩa đặc trưng của chuyển vận bao gồm: thông lượng, trễ truyền, và tỷ số lỗi dữ liệu. Là một hệ thống hoàn hảo, UMTS phải hỗ trợ rất nhiều các dịch vụ có các yêu cầu chất lượng dịch vụ (QoS) khác nhau. Hiện tại, ta cũng không dự đoán được hết các đặc điểm và cách sử dụng của rất nhiều các dịch vụ đó và cũng khó có thể tối ưu các dịch vụ UMTS thành chỉ một tập hợp các ứng dụng. Cho nên các bộ mang UMTS phải có đặc điểm chung, để hỗ trợ các ứng dụng đang tồn tại đồng thời thuận tiện cho việc cho việc phát triển các ứng dụng mới. Ngày nay khi mà hầu hết các dịch vụ viễn thông đều là các ứng dụng Internet hoặc N-ISDN, thì rõ ràng các ứng dụng và các dịch vụ này chủ yếu là gọi các thủ tục điều khiển các bộ mang. 39
  39. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Phần này không nghiên cứu sâu về các bộ mang, mà sẽ đề cập đến các lớp dịch vụ của UMTS. 2.4.2. Các lớp QoS UMTS. Các ứng dụng và dịch vụ UMTS được chia thành các nhóm khác nhau. Giống như các giao thức chuyển mạch gói mới, UMTS cố gắng đáp ứng các yêu cầu QoS từ các ứng dụng hoặc người sử dụng. Trong UMTS, có 4 lớp lưu lượng được xác định: - Lớp hội thoại (conversational). - Lớp luồng (streaming). - Lớp tương tác (interactive). - Các lớp nền (background). Các yếu tố phân biệt giữa các lớp là sự nhạy cảm với trễ của lưu lượng các lớp. Lớp hội thoại dành cho lưu lượng nhạy cảm với trễ nhất, trong khi lưu lượng lớp nền ít nhạy cảm với trễ nhất. 2.4.2.1 Lớp hội thoại. Ứng dụng được biết đến nhiều nhất của lớp này là dịch vụ thoại trên bộ mang chuyển mạch kênh. Kết hợp với Internet và multimedia có các ứng dụng mới như: thoại qua giao thức Internet ( Voice Over IP), và điện thoại hình (Video Telephony). Các dịch vụ này được thực hiện là các cuộc hội thoại thời gian thực có đặc điểm sau: trễ giữa các đầu cuối thấp (được xác định bằng các thử nghiệm phù hợp với khả năng cảm nhận âm thanh và hình ảnh của con người, nhỏ hơn 400ms), lưu lượng là đối xứng hoặc gần như đối xứng. Dịch vụ thoại đa tốc độ thích nghi (AMR). UMTS sử dụng bộ mã hoá và giải mã thoại theo công nghệ đa tốc độ thích nghi AMR. Bộ mã hoá thoại AMR có các đặc điểm sau: - Là một bộ mã hoá/giải mã thoại tích hợp đơn với 8 tốc độ nguồn: 12.2 (GSM-E - - FR), 10.2, 7.95, 7.40(IS-641), 5.90, 5.15 và 4.75 kbps. - Bộ mã hoá AMR hoạt động với khung thoại 20ms tương ứng với 160 mẫu với tần số lấy mẫu là 8000 mẫu/s. Sơ đồ mã hoá cho chế độ mã hoá đa tốc độ được gọi là Bộ mã hoá dự đoán tuyến tính được kích thích bởi mã đại số (ACELP). - Tốc độ bit AMR có thể điều khiển bởi mạng truy nhập vô tuyến tuỳ thuộc vào tải trên giao diện vô tuyến và chất lượng của kết nối thoại. Khi tải mạng ở mức cao , đặc biệt là trong giờ bận, có thể sử dụng tốc độ bit AMR thấp hơn để yêu cầu dung 40
  40. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS lượng cao hơn trong khi chất lượng thoại giảm đi rất ít. Cũng tương tự , khi MS chạy ra ngoài vùng phủ sóng của cell và đang sử dụng sử dụng công suất phát lớn nhất của nó, thì sử dụng tốc độ bit AMR thấp hơn để mở rộng vùng phủ của cell. Với bộ mã hoá thoại AMR có thể đạt được sự điều hoà giữa dung lượng vùng phủ của mạng và chất lượng của thoại tuỳ theo các yêu cầu của nhà điều hành. Điện thoại hình. Dịch vụ này có yêu cầu trễ tương tự như dịch vụ thoại. Nhưng do đặc điểm của nén video, yêu cầu BER nghiêm ngặt hơn thoại. UMTS đã chỉ ra các đặc tính trong ITU-T Rec. H.324M sử dụng cho điện thoại hình trong các kết nối chuyển mạch kênh và giao thức khởi tạo phiên (SIP) để hỗ trợ các ứng dụng đa phương tiện IP bao gồm dịch vụ điện thoại hình. 2.4.2.2 Lớp luồng. Luồng đa phương tiện là một kỹ thuật chuyển dữ liệu nhờ đó dữ liệu được được xử lý như là một luồng liên tục và đều đặn. Nhờ có công nghệ streaming, người sử dụng có thể truy cập nhanh để tải nhanh chóng các file đa phương tiện các trình duyệt có thể bắt đầu hiển thị dữ liệu trước khi toàn bộ file được truyền hết. Các ứng dụng streaming thường rất không đối xứng, cho nên phải chịu nhiều trễ hơn là các dịch vụ hội thoại đối xứng. Điều này có nghĩa là chúng phải chịu nhiều jitter hơn trong truyền dẫn. Các ứng dụng được chia thành 2 phạm vi mục đích khác nhau: Quảng bá web, luồng hình ảnh theo yêu cầu. Các nhà cung cấp dịch vụ quảng web thường hướng mục tiêu đến đông đảo khách hàng mà được kết nối với một máy chủ phương tiện truyền được tối ưu hóa hiệu suất thông qua Internet. Các dịch vụ luồng video theo yêu cầu thường sử dụng cho các công ty lớn mong muốn lưu trữ các video clip hoặc các bàigiảng vào một máy chủ được kết nối với một mạng intranet nội bộ băng thông cao hơn. 2.4.2.3 Lớp tương tác. Khi người sử dụng đầu cuối online để yêu cầu dữ liệu từ các thiết bị từ xa (máy chủ), thì lớp tương tác được sử dụng. Lưu lượng tương tác là một mô hình giao tiếp dữ liệu khác mà được đặc trưng bởi mẫu đáp ứng yêu cầu của người sử dụng đầu cuối, thời gian trễ round-trip, và tính trong suốt khi vận chuyển (với tốc độ lỗi bit thấp). Một ứng dụng quan trọng của lớp này là Computer game sử dụng công nghệ J2ME. 2.4.2.4 Lớp nền. 41
  41. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Lưu lượng dữ liệu của các ứng dụng như là Email, dịch vụ nhắn tin ngắn SMS, dịch vụ nhắn tin đa phương tiện MMS (MMS là một sự mở rộng hoàn hảo của SMS) tải về cơ sở dữ liệu, nhận các bản ghi đo đạc có thể sử dụng lớp nền vì các ứng dụng này không đòi hỏi các hành động tức thì. Lưu lượng nền có các đặc điểm sau: điểm đích không mong chờ dữ liệu trong một thời gian nhất định, cho nên ít nhiều không nhạy cảm với thời gian phân phát dữ liệu; nội dung các gói không nhất thiết phải chuyển một cách hoàn toàn trong suốt; dữ liệu bên thu không có lỗi. Ngoài ra, trong WCDMA còn có các dịch vụ và ứng dụng dựa vào vị trí: Dịch vụ định vị dựa vào vùng phủ sóng của cell; sự khác nhau về thời gian đã quan sát; các dịch vụ có hỗ trợ của hệ thống định vị toàn cầu (GPS). 2.4.3. Khả năng hỗ trợ dịch vụ của các lớp đầu cuối. Trong WCDMA, các thiết bị đầu cuối phải thông báo trên kết nối đã thiết lập cho mạng một tập hợp các thông số cho biết tính tương thích của phần truy nhập vô tuyến với các thiết bị đầu cuối đặc biệt. Khả năng có thể là tốc độ dữ liệu người sử dụng lớn nhất mà cấu hình vô tuyến hỗ trợ một cách độc lập trên cả đường lên và đường xuống. 3GPP đã chỉ ra khả năng truy nhập vô tuyến của thiết bị đầu cuối, một số tham khảo sau đây đã được 3GPP chuẩn hoá cho Release’99 như sau: Lớp 32 kbps : Lớp này cung cấp các dịch vụ thoại cơ bản, bao gồm thoại AMR, và dữ liệu tốc độ hạn chế lên tới 32 kbps. Lớp 64 kbps: Lớp này cung cấp dịch vụ thoại và số liệu bao gồm cả dữ liệu và thoại AMR đồng thời. Lớp 128 kbps: Lớp này có khả năng trên giao diện vô tuyến để cung cấp các dịch vụ chẳng hạn như điện thoại hình và các dịch vụ dữ liệu khác nhau. Lớp 384 kbps: Lớp này là lớp tăng cường cho lớp 128 kbps và có chức năng đa mã với mục đích hỗ trợ các phương thức dữ liệu gói tiên tiến. Lớp 768 kbps: được định nghĩa là một bước trung gian giữa lớp 384 kbps và lớp 2 Mbps. Lớp 2 Mbps: Lớp này là tầng cao nhất của lớp chất lượng dữ liệu cao, chỉ được định nghĩa cho đường xuống. Các lớp được xác định theo quy luật các lớp cao hơn có tất cả các khả năng của lớp thấp hơn. Trong WCDMA Release 5 đưa ra khả năng Truy cập dữ liệu gói đường xuống tốc độ cao HSDPA, khả năng tốc độ của thiết bị đầu cuối có thể lên tới 10Mbps. 2.4. Tổng kết về công nghệ truy nhập vô tuyến WCDMA trong hệ thống UMTS 42
  42. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS WCDMA là công nghệ đa truy nhập phân chia theo mã băng rộng sử dụng cho phần giao diện vô tuyến cho hệ thống thông tin di động thế hệ 3 UMTS. Các thông số nổi bật đặc trưng cho WCDMA như sau: WCDMA là hệ thống đa truy nhập phân chia theo mã trải phổ dãy trực tiếp băng rộng DS-CDMA, nghĩa là các bit thông tin được trải ra trong một băng tần rộng bằng cách nhân dữ liệu người dùng với các bit giả ngẫu nhiên (gọi là chip), các bit này xuất phát từ các mã trải phổ CDMA. Để hỗ trợ tốc độ bit cao (lên tới 2Mbps), cần sử dụng các kết nối đa mã và hệ số trải phổ khác nhau. WCDMA có tốc độ chip là 3.84 Mcps dẫn đến băng thông của sóng mang xấp xỉ 5MHz, nên được gọi là hệ thống băng rộng. Còn các hệ thống DS-CDMA với băng tần khoảng 1 MHz như IS-95, thường được gọi là hệ thống CDMA băng hẹp. Băng thông rộng của sóng mang WCDMA hỗ trợ các tốc độ dữ liệu cao của người dùng và đem lại những lợi ích hiệu suất xác định, như là tăng khả năng phân tập đa đường. Các nhà vận hành mạng có thể sử dụng nhiều sóng mang 5MHz để tăng dung lượng, có thể bằng cách sử dụng các lớp tế bào phân cấp. Khoảng cách giữa các sóng mang thực tế có thể được chọn là lưới 200KHz trong khoảng 4.4 – 5Mhz tuỳ thuộc vào nhiễu giữa c ác sóng mang. WCDMA hỗ trợ tốt các tốc độ dữ liệu người dùng khác nhau hay nói cách khác là hỗ trợ tốt đặc tính băng thông theo yêu cầu (BoD). Mỗi người sử dụng được cấp các khung có độ rộng 10ms, trong khi tốc độ người sử dụng được giữ không đổi. Tuy nhiên dung lượng người sử dụng có thể thay đổi giữa các khung. Việc cấp phát nhanh dung lượng vô tuyến thông thường sẽ được điều khiển bởi mạng để đạt được thông lượng tối ưu cho các dịch vụ dữ liệu gói. WCDMA hỗ trợ mô hình hoạt động cơ bản: Chế độ song công phân chia theo tần số FDD và song công phân chia theo thời gian TDD (Time Division Duplex). Trong chế độ FDD, các tần số sóng mang 5MHz khác nhau sẽ được sử dụng cho đường lên và đường xuống, trong khi ở chế đố TDD, chỉ có 1 sóng mang 5MHz được sử dụng bằng cách chia sẻ miền thời gian cho các đường lên và đường xuống. WCDMA hỗ trợ hoạt động của các trạm gốc dị bộ, khác với hệ thống đồng bộ IS- 95, nên không cần chuẩn thời gian toàn cầu ,như là GPS, Việc triển khai các trạm gốc micro và trạm gốc indoor sẽ dễ dàng hơn khi nhận tín hiệu mà không cần GPS. WCDMA áp dụng kỹ thuật tách sóng kết hợp trên cả đường lên và đường xuống dựa vào việc sử dụng kênh hoa tiêu. Mặc dù được sử dụng trên đường xuống IS-95, nhưng việc sử dụng tách sóng kết hợp trên đường lên trong hệ thống WCDMA là mới, có khả năng tăng tổng thể dung lượng và vùng phủ sóng của đường lên. 43
  43. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Giao diện vô tuyến WCDMA được xây dựng một cách khéo léo theo cách của các bộ thu CDMA tiên tiến, như là khả năng tách sóng nhiều người dùng và các anten thích ứng thông minh, có thể được triển khai bởi các nhà điều khiển mạng như là một hệ thống được chọn lựa để tăng dung lượng và vùng phủ sóng. Trong hầu hết các hệ thống thế hệ 2, không có các điều khoản cho các khái niệm bộ thu này, có nghĩa là chúng không có khả năng ứng dụng hoặc không thể áp dụng một cách bắt buộc với việc tăng hiệu suất một cách hạn chế. WCDMA được thiết kế để giao tiếp với GSM. Vì thế, sự chuyển giao giữa GSM và WCDMA được hỗ trợ để cải tiến vùng phủ sóng của GSM bằng cách sử dụng WCDMA. Bảng 2- 2 Tóm tắt các thông số chính của WCDMA Phương thức đa truy nhập DS-CDMA Phương thức song công FDD/TDD Việc đồng bộ trạm gốc Hoạt động không đồng bộ Tốc độ chip 3,84Mcps Chiều dài khung 10ms Ghép các dịch vụ Nhiều dịch vụ với yêu cầu chất lượng khác nhau được ghép xen trên một kết nối Khái niệm đa tốc độ Hỗ trợ tốc độ trải phổ khác nhau và đa mã Tách sóng Tách sóng kết hợp sử dụng đại diện kênh pilot hoặc kênh pilot chung Tách sóng nhiều người sử dụng, Được hỗ trợ bởi các chuẩn, tuỳ chọn trong quá các Anten thông minh trình thực thi Sự khác nhau giữa WCDMA và cdma2000 (hay còn gọi là cdmaOne băng rộng) có thể chỉ ra trong một số các đặc điểm được trình bày trong bảng 2-3. Bảng 2- 3 Các điểm khác nhau cơ bản của W-CDMA và cdma2000 Thông số cdma2000 ETSI W-CDMA Phương thức truy nhập UL: DS-CDMA UL&RL: DS-CDMA DL:Multicarrier/DS-CDMA Tốc độ chip (Mcps) Bội số của 1.2288 Bội số của 1.024 Tốc độ điều khiển công 800Hz (Tốc độ cao hơn đang 1600Hz suất được nghiên cứu) Cấu trúc kênh đường Các kênh Fund/Supp được ghép Các kênh được ghép theo xuống theo mã thời gian. Kênh pilot chung duy trì + kênh Kênh pilot được ghép theo pilot phụ thời gian 44
  44. Chương 2- Tổng quan công nghệ WCDMA trong hệ thống UMTS Cấu trúc kênh đường lên Kênh mã đơn với các mã Walsh Các kênh đa mã để hỗ trợ các dịch vụ dữ biến đổi liệu tốc độ cao HSD. Trải phổ đường lên Sự kết hợp của mã dài và mã Các mã ngắn dựa vào các ngắn tương tự như CDMA 2G chuỗi mã trực giao lớp. Mã dài trên cơ sở các mã Gold. Kênh Pilot đường lên Kênh pilot được ghép theo mã Kênh pilot được ghép theo thời gian Sự đồng bộ trạm gốc Đồng bộ (cần có GPS) Không đồng bộ * Chú ý: UL: Uplink- Đường lên, DL: Downlink- Đường xuống 45
  45. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Chương 3. ĐIỀU KHIỂN CÔNG SUẤT VÀ CHUYỂN GIAO TRONG QUẢN LÝ TÀI NGUYÊN VÔ TUYẾN. 3.1 Giới thiệu chung quản lý tài nguyên vô tuyến trong hệ thốngWCDMA. 3.1.1 Mục đích chung của quản lý tài nguyên vô tuyến Việc quản lý tài nguyên vô tuyến (RRM) trong mạng di động 3G có nhiệm vụ cải thiện việc sử dụng nguồn tài nguyên vô tuyến. Các mục đích của công việc quản lý tài nguyên vô tuyến RRM có thể tóm tắt như sau : Đảm bảo QoS cho các dịch vụ khác nhau. Duy trì vùng phủ sóng đã được hoạch định. Tối ưu dung lượng hệ thống. Trong các mạng 3G, việc phân bố tài nguyên và định cỡ quá tải của mạng không còn khả thi nữa do các nhu cầu không dự đoán trước và các yêu cầu khác nhau của các dịch vụ khác nhau. Vì thế, quản lý tài nguyên bao gồm 2 phần : Đặt cấu hình và đặt lại cấu hình tài nguyên vô tuyến. Việc đặt cấu hình tài nguyên vô tuyến có nhiệm vụ phân phát nguồn tài nguyên một cách hợp lý cho các yêu cầu mới đang đưa đến hệ thống để cho mạng không bị quá tải và duy trì tính ổn định. Tuy nhiên, nghẽn có thể xuất hiện trong mạng 3G vì sự di chuyển của người sử dụng. Việc đặt lại cấu hình có nhiệm vụ cấp phát lại nguồn tài nguyên trong phạm vi của mạng khi hiện tượng nghẽn bắt đầu xuất hiện. Chức năng này có nhiệm vụ đưa hệ thống bị quá tải trở về lưu lượng tải mục tiêu một cách nhanh chóng và có thể điều khiển được. 3.1.2. Các chức năng của quản lý tài nguyên vô tuyến RRM. Quản lý nguồn tài nguyên vô tuyến có thể chia thành các chức năng : Điều khiển công suất, chuyển giao, điều khiển thu nhận, điều khiển tải và lập lịch cho gói tin. Hình 3-1 chỉ ra các vị trí điển hình của các chức năng RRM trong phạm vi của một mạng WCDMA. 46
  46. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Hình 3- 1 Các vị trí điển hình của các chức năng RRM trong mạng WCDMA a. Điều khiển công suất. Điều khiển công suất là một công việc quan trọng trong tất cả các hệ thống di động vì vần để tuổi thọ của pin và các lý do an toàn, nhưng trong các hệ thống CDMA, điều khiển công suất là cần thiết bởi vì đặc điểm giới hạn nhiễu của CDMA. Trong các hệ thống GSM, chỉ áp dụng điều khiển công suất chậm (tần số xấp xỉ 2Hz). Trong IS-95, điều khiển công suất nhanh với tần số 800Khz được hỗ trợ ở đường lên, nhưng trên đường xuống, một vòng điều khiển công suất tương đối chậm (xấp xỉ 50Hz) điều khiển công suất truyền. Trong WCDMA, điều khiển công suất nhanh với tần số 1,5KHz được sử dụng trên cả đường lên và đường xuống. Điều khiển công suất nhanh khép kín là một vấn đề quan trọng của hệ thống WCDMA. b. Điều khiển chuyển giao. Chuyển giao là một phần quan trọng của hệ thống thông ti di động tế bào. Sự di chuyển gây ra sự biến đổi chất lượng liên kết và các mức nhiễu trong các hệ thống tế bào, yêu cầu khi một người sử dụng cụ thể thay đổi trạm gốc phục vụ nó. Sự thay đổi này được gọi là chuyển giao. c. Điều khiển thu nạp. Nếu tải giao diện vô tuyến được cho phép tăng lên một cách liên tục, vùng phủ sóng của cell bị giảm đi dưới giá trị đã hoạch định (gọi là “cell breathing”), và QoS của các kết nối đang tồn tại không thể đảm bảo. Nguyên nhân của hiệu ứng “cell breathing” là vì đặc điểm giới hạn nhiễu của các hệ thống CDMA. Vì thế, trước khi thu nhận một kết nối mới, điều khiển thu nạp cần kiểm tra xem việc nhận kết nối mới sẽ không ảnh hưởng đến vùng phủ sóng hoặc QoS của các kết nối đang hoạt động. Điều khiển thu nạp chấp nhận hay từ chối yêu cầu thiết lập một bộ mang truy nhập vô 47
  47. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến tuyến trong mạng truy nhập vô tuyến. Chức năng điều khiển thu nạp được đặt trong bộ điều khiển mạng vô tuyến RNC, nơi mà lưu giữ thông tin vể tải của một số cell. Thuật toán điều khiển thu nạp tính toán việc tải tăng lên mà do sự thiết lập thêm vật mang sẽ gây ra trong mạng truy nhập vô tuyến. Việc tính toán tải được áp dụng cho cả đường lên và đường xuống. Bộ mang yêu cầu có thể được chấp nhận chỉ khi điều khiển thu nạp trong cả 2 chiều chấp nhận, nếu không thì nó bị từ chối bởi vì nhiễu quá mức có thể tăng thêm trong mạng. Nhìn chung các chiến lược điều khiển thu nạp có thể chia thành hai loại: chiến lược điểu khiển thu nạp dựa vào công suất băng rộng và chiến lược điều khiển thu nạp dựa vào thông lượng. Người sử dụng mới không được chấp nhận nếu mức nhiễu tổng thể mới tạo ra cao hơn giá trị mức ngưỡng Ithreshold: + Từ chối : Itotal-old + I > Ithreshold (3.1) + Chấp nhận : Itotal-old + I threshold +Chấp nhận : total-old + I < threshold (3.2) 48
  48. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Chú ý rằng việc điều khiển thu nạp được áp dụng một cách tách biệt trên cả đường lên và đường xuống, và ở mỗi hướng có thể sử dụng các chiến lược điều khiển thu nạp khác nhau. d. Điều khiển tải (điểu khiển nghẽn). Một công cụ quan trọng của chức năng quản lý nguồn tài nguyên vô tuyến là đảm bảo cho hệ thống không bị quá tải và duy trì tính ổn định. Nếu hệ thống được quy hoạch một cách hợp lý, và công việc điều khiển thu nạp hoạt động tốt, các tình huống quá tải sẽ bị loại trừ. Tuy nhiên, trong mạng di động, sự quá tải ở một nơi nào đó là không thể tránh khỏi vì các tài nguyên vô tuyến được ấn định trước trong mạng. Khi quá tải được xử lý bởi điều khiển tải, hay còn gọi là điều khiển nghẽn, hoạt động điều khiển này sẽ trả lại cho hệ thống tải mục tiêu, được vạch ra trong quá trình quy hoạch mạng một cách nhanh chóng và có khả năng điều khiển được. Các hoạt động điều khiển tải để làm giảm hay cân bằng tải được liệt kê như sau: Từ chối các lệnh công suất tới trên đường xuống nhận từ MS. Giảm chỉ tiêu Eb/I0 đường lên sử dụng bởi điều khiển công suất nhanh đường lên. Thay đổi kích cỡ của miền chuyển giao mềm để phục vụ nhiều người sử dụng hơn. Chuyển giao tới sóng mang WCDMA khác (mạng UMTS khác hay mạng GSM). Giảm thông lượng của lưu lượng dữ liệu gói (các dữ liệu phi thời gian thực). Ngắt các cuộc gọi trên một đường điều khiển. Hai hoạt động đầu tiên là các hoạt động nhanh được thực hiện bên trong BS. Các hoạt động này có thể diễn ra trong một khe thời gian, nghĩa là với một tần số 1,5KHz, cung cấp một quyền ưu tiên cho các dịch vụ khác nhau. Hoạt động thứ 3 thay đổi kích cỡ của miền chuyển giao mềm có một lợi ích đặc biệt đối với mạng giới hạn đường xuống. Các phương pháp điều khiển tải khác thì chậm hơn. Chuyển giao bên trong băng tần và chuyển giao bên trong hệ thống có thể khắc phục được hiện tượng quá tải bằng cách cân bằng tải. Hoạt động cuối cùng là ngắt các người sử dụng dịch vụ thời gian thực (như là thoại hay dữ liệu chuyển mạch kênh) để giảm tải. Hoạt động này chỉ được sử dụng chỉ khi tải của toàn bộ mạng vẫn rất lớn thậm chí sau khi các hoạt động điều khiển tải khác vừa có tác dụng để giảm quá tải. Giao diện vô tuyến WCDMA và yêu cầu tăng của lưu lượng phi thời gian thực trong mạng 3G đem lại nhiều sự lựa chọn các hoạt động khả thi để điều khiển tình huống quá tải, và vì thế nhu cầu cắt những người sử dụng dịch vụ thời gian thực để giảm quá tải rất hiếm xảy ra. 49
  49. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến 3.2 Điều khiển công suất 3.2.1 Giới thiệu chung Mục tiêu của việc sử dụng điều khiển công suất là khác nhau trên đường lên và đường xuống. Các mục tiêu của điều khiển công suất có thể tóm tắt như sau : Khắc phục hiệu ứng gần-xa trên đường lên. Tối ưu dung lượng hệ thống bằng việc điều khiển nhiễu. Làm tăng tối đa tuổi thọ pin của đầu cuối di động. Hình 3-3 chỉ ra hiệu ứng gần-xa trên đường lên. Tín hiệu từ các MS khác nhau được truyền đi trong cùng băng tần một cách đồng thời trong các hệ thống WCDMA. Không có điều khiển công suất, tín hiệu đến từ MS gần với BS nhất có thể chặn các tín hiệu từ các MS khác cách xa BS hơn. Trong tình huống xấu nhất, một MS có công suất quá lớn có thể chặn toàn bộ một cell. Giải pháp là phải áp dụng điều khiển công suất để đảm bảo rằng các tín hiệu đến từ các đầu cuối khác nhau có cùng công suất hay có cùng tỷ số tín hiệu trên nhiễu (SIR) khi chúng đến BS. Hình 3- 3 Hiệu ứng gần-xa (điều khiển công suất trên đường lên) Trên đường xuống, không có hiệu ứng gần-xa do mô hình một-tới-nhiều. Điều khiển công suất có nhiệm vụ bù nhiễu bên trong cell gây ra bởi các trạm di động, đặc biệt là nhiễu gần biên giới của của các cell này (được chỉ ra trong hình 3-4). Hơn thế nữa, điều khiển công suất trên đường xuống có nhiệm vụ làm giảm thiểu toàn bộ nhiễu bằng cách giữ QoS tại mức giá trị mục tiêu. Hình 3- 4 Bù nhiễu bên trong cell (điều khiển công suất ở đường xuống) 50
  50. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Trong hình 3-4, MS2 phải chịu nhiều nhiễu bên trong cell hơn MS1. Vì thế để đáp ứng mục tiêu chất lượng giống nhau, cần nhiều năng lượng cấp phát cho cho các kênh đường xuống giữa BS và MS2. Có 3 kiểu điều khiển công suất trong các hệ thống WCDMA : Điều khiển công suất vòng mở, điều khiển công suất vòng kín, và điều khiển công suất vòng bên ngoài. a) Điều khiển công suất vòng mở (Open-loop power control) Điều khiển công suất vòng mở được sử dụng trong UMTS FDD cho việc thiết lập năng lượng ban đầu cho MS. Trạm di động sẽ tính toán suy hao đường truyền giữa các trạm gốc và trạm di động bằng cách đo cường độ tín hiệu nhận sử dụng mạch điều khiển độ tăng ích tự động (AGC). Tuỳ theo sự tính toán suy hao đường truyền này, trạm di động có thể quyết định công suất phát đường lên của nó. Điều khiển công suất vòng mở có ảnh hưởng trong hệ thống TDD bởi vì đường lên và đường xuống là tương hỗ, nhưng không ảnh hưởng nhiều trong các hệ thống FDD bởi vì các kênh đường lên và đường xuống hoạt động trên các băng tần khác nhau và hiện tượng Phadinh Rayleigh trên đường lên và đường xuống độc lập nhau. Vậy điều khiển công suất vòng mở chỉ có thể bù một cách đại khái suy hao do khoảng cách. Đó là lý do tại sao điều khiển công suất vòng mở chỉ được sử dụng như là việc thiết lập năng lượng ban đầu trong hệ thống FDD. b) Điều khiển công suất vòng kín. Điều khiển công suất vòng khép kín, được gọi là điều khiển công suất nhanh trong các hệ thống WCDMA, có nhiệm vụ điều khiển công suất phát của MS (đường lên), hay là công suất của trạm gốc (đường xuống) để chống lại phadinh của các kênh vô tuyến và đạt được chỉ tiêu tỷ số tín hiệu trên nhiễu SIR được thiết lập bởi vòng bên ngoài. Chẳng hạn như trên đường lên, trạm gốc so sánh SIR nhận được từ MS với SIR mục tiêu trong mỗi khe thời gian (0,666ms). Nếu SIR nhận được lớn hơn mục tiêu, BS sẽ truyền một lệnh TPC “0” đến MS thông qua kênh điều khiển riêng đường xuống. Nếu SIR nhận được thấp hơn mục tiêu, BS sẽ truyền một lệnh TPC “1” đến MS. Bởi vì tần số của điều khiển công suất vòng kín rất nhanh nên có thể bù được phadinh nhanh và cả phadinh chậm. c) Điều khiển công suất vòng bên ngoài Điều khiển công suất vòng bên ngoài cần thiết để giữ chất lượng truyền thông tại các mức yêu cầu bằng cách thiết lập mục tiêu cho điều khiển công suất vòng kín nhanh. Mục đích của nó là cung cấp chất lượng yêu cầu. Tần số của điều khiển công suất vòng bên ngoài thường là 10-100Hz. 51
  51. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Điều khiển công suất vòng bên ngoài so sánh chất lượng nhận được với chất lượng yêu cầu. Thông thường, chất lượng được định nghĩa là tỷ lỗi bit mục tiêu xác định (BER) hay Tỷ số lỗi khung (FER). Mối quan hệ giữa SIR mục tiêu và mục tiêu chất lượng tuỳ thuộc vào tốc độ di động và hiện trạng đa đường. Nếu chất lượng nhận tốt hơn, có nghĩa là mục tiêu SIR đủ cao để đảm bảo QoS yêu cầu. Để giảm thiểu khoảng trống, mục tiêu SIR sẽ phải giảm. Tuy nhiên, nếu chất lượng nhận xấu hơn chất lượng yêu cầu, mục tiêu SIR phải tăng lên để đảm bảo QoS yêu cầu. 3.2.2 Điều khiển công suất nhanh 3.2.2.1 Độ lợi của điều khiển công suất nhanh Điều khiển công suất nhanh trong WCDMA đem lại nhiều lợi ích cho hệ thống. Chẳng hạn đối với dịch vụ mô phỏng có tốc độ 8kbps với BLER=1% và ghép xen 10ms. Sự mô phỏng được tạo ra trong trường hợp có hoặc không có điều khiển công suất nhanh với bước công suất là 1dB. Điều khiển công suất chậm có nghĩa là công suất trung bình được giữ tại mức mong muốn và điều khiển công suất chậm hoàn toàn có thể bù cho ảnh hưởng của suy hao đường truyền và suy hao do các vật chắn, trong khi đó điều khiển công suất nhanh có thể bù được cho phadinh nhanh. Phân tập thu hai nhánh được sử dụng trong Nút B. ITU Vehicular A là một kênh 5 nhánh trong WCDMA, và ITU Pedestrian A là một kênh 2 nhánh trong đó nhánh thứ hai rất yếu. Tỷ số Eb/N0 , và công suất truyền trung bình yêu cầu trong trường hợp không có và có điều khiển công suất nhanh được trình bày trong bảng 3.1 và bảng 3.2 Bảng 3- 1 Giá trị Eb/N0 yêu cầu trong trường hợp có và không có điều khiển công suất nhanh Điều khiển Điều khiển công suất Độ lợi của điều khiển công suất chậm nhanh tần số 1.5KHz công suất nhanh ITU PedestrianA 3km/h 11.3dB 5.5dB 5.8dB ITU Vehicular A 3km/h 8.5dB 6.7dB 1.8dB ITU VehicularA 50km/h 7.3dB 6.8dB 0.5dB Bảng 3- 2 Công suất phát tương đối yêu cầu trong trường hợp có và không có điều khiển công suất nhanh Điều khiển Điều khiển công suất Độ lợi của điều khiển công suất chậm nhanh tần số 1.5KHz công suất nhanh ITU PedestrianA 3km/h 11.3dB 7.7dB 3.6dB ITU Vehicular A 3km/h 8.5dB 7.5dB 1.0dB ITU VehicularA 50km/h 7.6dB 6.8dB 0.8dB Trong 2 bảng trên ta thấy rõ độ lợi mà điều khiển công suất nhanh đem lại như sau: Độ lợi của các UE tốc độ thấp lớn hơn các UE tốc độ cao. 52
  52. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Độ lợi theo tỷ số Eb/I0 yêu cầu lớn hơn độ lợi công suất truyền dẫn. Trong 2 bảng, độ lợi âm tại tốc độ 50km/h có nghĩa là điều khiển công suất chậm lý tưởng sẽ đem lại hiệu suất tốt hơn so với điều khiển công suất nhanh thức tế. Độ lợi âm do việc tính toán SIR không chính xác, các lỗi báo hiệu điều khiển công suất, và trễ trong vòng điều khiển công suất. Độ lợi từ điều khiển công suất nhanh trong bảng 3-6 có thể được sử dụng để tính toán độ dự trữ phadinh nhanh yêu cầu trong quỹ đường truyền. Độ dữ trữ phadinh nhanh cần thiết cho công suất phát của UE để duy trì điều khiển công suất nhanh vòng kín thích hợp. Kích thước cell lớn nhất có thể đạt được khi UE đang phát với đủ lượng công suất không đổi nghĩa là không có độ lợi của điểu khiển công suất nhanh. Giá trị thông thường cho độ dự trữ phadinh nhanh cho các tốc độ di động thấp từ 2 đến 5dB. 3.2.2.2 Phân tập và điều khiển công suất. Hình 3- 5 Công suất phát và thu trong 2 nhánh (công suất khoảng hở trung bình 0dB,- 10dB) Kênh phadinh Rayleigh tại 3km/h Tầm quan trọng của phân tập sẽ được phân tích cùng với điều khiển công suất nhanh. Với các UE tốc độ thấp, điều khiển công suất nhanh có thể bù đựơc phadinh của kênh và giữ cho mức công suất thu không đổi. Các nguyên nhân chính của các lỗi trong công suất thu là do việc tính toán SIR không chính xác, các lỗi báo hiệu và trễ trong vòng điều khiển công suất. Việc bù phadinh gây ra suy giảm công suất truyền dẫn. Công suất thu và công suất phát là hàm của thời gian, hình 3-5, 3-6 tại tốc độ của UE là 3km/h. Trong hình 3-5 là trường hợp có ít phân tập, hình 3-6 mô phỏng trường hợp phân tập nhiều. Sự biến đổi công suất phát trong trường hợp hình 3-5 cao hơn trong trường hợp 3-6 do sự khác nhau về số lượng phân tập. Các trường hợp phân tập như: phân tập đa đường, phân tập anten thu, phân tập anten phát hay phân tập vĩ mô. 53
  53. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Với sự phân tập ít hơn thì sự biến động lớn hơn trong công suất phát, nhưng công suất phát trung bình cũng cao hơn. Mức tăng công suất là được định nghĩa là tỷ số giữa công suất truyền dẫn trung bình trên kênh phadinh và trên kênh không có phadinh khi mức công suất thu giống nhau trên cả 2 kênh có phadinh và không có phadinh. Mức tăng công suất được mô tả trong hình 3-7 Hình 3- 6 Công suất phát và thu trên 3 nhánh (công suất khoảng hở như nhau) Kênh phadinh Rayleigh tại tốc độ 3km. Hình 3- 7 Công suất tăng trong kênh phadinh với điều khiển công suất nhanh Kết quả ở mức liên kết cho sự tăng công suất đường lên thể hiện trong bảng 3.3. Sự mô phỏng được thực hiện tại các mức UE khác nhau trên kênh ITU pedestrian 2 đường với công suất thành phần đa đường từ 0 đến -12.5dB. Trong sự mô phỏng này công suất phát và công suất thu được tập hợp trong từng khe. Với điều khiển công suất lý tưởng, mức tăng công suất là 2,3dB. Điều đó chứng tỏ điều khiển công suất nhanh hoạt động có hiệu quả trong việc bù năng lượng cho phadinh. Với các UE tốc độ cao 54
  54. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến (>100km/h), mức tăng công suất rất nhỏ do điều khiển công suất nhanh không thể bù được phadinh. Mức tăng công suất rất quan trọng đối với hiệu suất của các hệ thống WCDMA. Trên đường xuống, dung lượng giao diện vô tuyến được xác định trực tiếp bởi công suất phát yêu cầu, do công suất đó xác định nhiễu truyền. Vì thế, để làm tăng tối đa dung lượng đường xuống, công suất phát cần cho một liên kết phải được giảm nhỏ. Trên đường xuống, mức công suất thu trong UE không ảnh hưởng đến dung lượng. Trên đường lên, công suất phát xác định tổng nhiễu đến các cell lân cận, và công suất thu xác định tổng nhiễu đến các UE khác trong cùng một cell. Chẳng hạn như chỉ có một cell WCDMA trong một vùng, dung lượng đường lên của cell này sẽ được tăng tối đa bằng cách giảm tối thiểu công suất thu yêu cầu, và mức tăng công suất sẽ không ảnh hưởng đến dung lượng đường lên. Bảng 3- 3 Các mức tăng công suất được minh hoạ của kênh ITU Pedestrian A đa đường với phân tập anten. Tốc độ UE Mức tăng công suất trung bình 3km/h 2,1dB 10km/h 2,0dB 20km/h 1,6dB 50km/h 0,8dB 140km/h 0,2dB 3.2.2.3 Điều khiển công suất trong chuyển giao mềm. Điều khiển công suất trong chuyển giao mềm có hai vấn đề chính khác nhau trong các trường hợp liên kết đơn: vấn đề trôi công suất trong Nút B trên đường xuống , và phát hiện tin cậy các lệnh điều khiển công suất đường lên trong UE. a. Sự trôi công suất đường xuống. Sự trôi công suất là trường hợp xảy ra khi thực hiện chuyển giao mềm mà UE gửi một lệnh đơn để điều khiển công suất phát đường xuống đến tất cả các Nút B trong tập hợp “tích cực”. Các Nút B sẽ phát hiện các lệnh này một cách độc lập, bởi vì các lệnh này sẽ không được kết hợp trong các bộ điều khiển mạng RNC do sẽ gây ra nhiều trễ và báo hiệu trong mạng. Chính vì các lỗi báo hiệu trên giao diện vô tuyến, các Nút B sẽ phát hiện các lệnh điều khiển công suất theo các cách khác nhau. Có thể một Nút B sẽ làm giảm công suất phát của nó tới UE, một Nút B khác có thể lại tăng mức công suất phát tới UE. Sự khác nhau đó dẫn đến tình huống công suất đường xuống bắt đầu trôi theo hướng khác nhau. Hiện tượng đó gọi là trôi công suất. Hiện tượng trôi công suất là không mong muốn, bởi vì nó làm giảm hiệu suất chuyển giao đường xuống. Vấn đề này có thể được điều khiển bởi RNC. Phương pháp 55
  55. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến đơn giản nhất là thiết lập giới hạn tương đối nghiêm ngặt cho khoảng biến động công suất đường xuống. Giới hạn này cho công suất phát cụ thể của các UE. Rõ ràng khoảng biến động điều khiển công suất cho phép càng nhỏ thì độ trôi công suất lớn nhất càng nhỏ. Mặt khác khoảng biến đổi điểu khiển công suất thường cải thiện hiệu suất điều khiển công suất. Nuùt B1 1. Phaùt hieän leänh coâng suaát ñöôøng xuoáng 2. Ñieàu chænh ñoäc laäp coâng suaát ñöôøng xuoáng so vôùi caùc Nuùt B khaùc Troâi coâng => Coâng suaát truyeàn coù theå troâi töøng suaát phaàn Coâng suaát phaùtLeänh töø Nuùt ñieàu B1 khieån coâng suaát ñôn töø UE ñeán caû hai Nuùt B Coâng suaát phaùt töø Nuùt B2 RNC Nuùt B2 Ñieàu khieån troâi coâng suaát Hình 3- 8 Trôi công suất đường xuống trong chuyển giao mềm Nuùt B1 1. Tính toaùn Eb/No cuûa tín hieäu ñöôøng leân ñoäc laäp vôùi caùc Nuùt B khaùc Kieåm tra ñoä 2. Göûi leänh ñieàu khieån coâng suaát ñeán UE tin caäy => Hai Nuùt B khaùc nhau coù theå göûi caùc leänh ñieàu khieån coâng suaát khaùc nhau tôùi UE ñöôøng leân 1 Leänh ñieàu khieån coâng suaát UE coù theå giaûm coâng suaát phaùt neáu coù ít nhaát moät leänh ñieàu khieån coâng suaát tin caäy ñeán noù Leänh ñieàu khieån coâng suaát RNC UE ñöôøng leân 2 Nuùt B2 Hình 3- 9 Kiểm tra độ tin cậy của điều khiển công suất đường lên tại UE trong chuyển giao mềm 56
  56. Chương 3- Điều khiển công suất và chuyển giao trong quản lý tài nguyên vô tuyến Một cách khác để giảm sự trôi công suất. RNC có thể nhận thông tin từ các Nút B về các mức công suất phát của kết nối chuyển giao mềm. Các mức này được tính trung bình trên một số các lệnh điều khiển công suất, ví dụ như trong 500ms, hay trên 750 lệnh điều khiển công suất. Dựa vào các thông số đo đạc này, RNC có thể gửi các giá trị tham khảo về công suất phát đường xuống tới các Nút B. Các Nút B đang thực hiện chuyển giao mềm sử dụng các giá trị tham khảo này cho việc điều khiển công suất đường xuống cho các kết nối để giảm hiện tượng trôi công suất. Như vậy cần một sự hiệu chỉnh nhỏ mang tính định kỳ để hướng tới công suất tham khảo. Kích cỡ hiệu chỉnh này tỷ lệ thuận với độ chênh lệch giữa công suất phát thực tế và công suất phát tham khảo. Phương pháp này sẽ giảm bớt hiện tượng trôi công suất. Sự trôi công suất chỉ xảy ra nếu có điều khiển công suất nhanh trên đường xuống. Trong IS-95 chỉ có điều khiển công suất chậm trên đường xuống nên không cần phương pháp điều khiển sự trôi công suất đường xuống. b.Độ tin cậy của các lệnh điều khiển công suất đường lên. Tất cả các Nút B trong tập hợp “tích cực” gửi một lệnh điều khiển công suất độc lập đến các UE để điều khiển công suất phát đường lên. Chỉ cần một trong các Nút B trong tập hợp tích cực nhận đúng tín hiệu đường lên là đủ. Vì thế UE có thể giảm công suất phát nếu một trong các Nút B gửi các lệnh công suất xuống. Có thể áp dụng sự kết hợp theo tỷ số lớn nhất các bit dữ liệu trong chuyển giao mềm tại UE do dữ liệu giống nhau được gửi từ tất cả các Nút B thực hiện chuyển giao mềm, nhưng sự kết hợp này không áp dụng cho các bit điều khiển công suất vì nó chứa thông tin khác nhau đối với mỗi Nút B trong tập hợp “tích cực”. Vì thế độ tin cậy của các bit điều khiển công suất không tốt bằng các bit dữ liệu, và tại UE, một ngưỡng được sử dụng để kiểm tra độ tin cậy của các lệnh điều khiển công suất. Các lệnh không đáng tin cậy phải được huỷ bỏ vì chúng đã bị hỏng do nhiễu. c. Cải thiện chất lượng báo hiệu điều khiển công suất . Chất lượng báo hiệu điều khiển công suất có thể được cải thiện bằng cách thiết lập một công suất cao hơn cho các kênh điều khiển vật lý riêng (DPCCH) so với mức công suất của kênh dữ liệu vật lý riêng (DPDCH) trên đường xuống nếu như UE đang trong trạng thái chuyển giao mềm. Độ chênh lệch công suất giữa hai kênh này có thể khác cho các cho các loại kênh DPCCH khác nhau như: các bit điều khiển công suất, các bit pilot và TFCI. Độ giảm công suất phát UE thông thường có thể đạt được tới 0,5dB với sự chênh lệch công suất này. Độ giảm này có thể đạt được do chất lượng của báo hiệu điều khiển công suất được cải thiện. 57